Реактивный самолёт


Сверхзвуковые

Военные

A-5 «Виджилент» (North American A-5 Vigilante) — единственный в истории авиации сверхзвуковой палубный бомбардировщик.

Як-141 (прототип) и F-35 Lightning II — сверхзвуковые палубные истребители.

Гражданские

Ту-144ЛЛ в полёте

За всю историю авиации было создано только два сверхзвуковых пассажирских авиалайнера.

  • СССР — Ту-144, первый полёт 31 декабря 1968, начало перевозок пассажиров 1 ноября 1977, 1 июня 1978 снят с эксплуатации после очередной катастрофы. Построено 16 шт., в перевозках пассажиров участвовали 2, совершено 55 рейсов, перевезено 3194 пассажира. Во всех рейсах командирами экипажа были лётчики-испытатели ОКБ Туполева.
  • Великобритания, Франция — Aérospatiale-BAC Concorde, первый полёт 2 марта 1969, начало эксплуатации 21 января 1976, выведен из эксплуатации 26 ноября 2003. Построено 20 машин, активно эксплуатировалось 14, перевезено более 3 млн пассажиров, средний налёт — 17 417 часов. Один потерян в катастрофе 25 июля 2000 года, имел налёт 11 989 часов при наибольшем из всех самолётов — 23 397 (заводской № 210, регистрация G-BOAD, находится в Intrepid Sea-Air-Space Museum (англ.)).

Описание конструкции истребителя МиГ-9

МиГ-9 – это цельнометаллический одноместный истребитель, оснащенный двумя турбореактивными двигателями. Он выполнен по классической схеме со среднерасположенным крылом и трехопорным убирающимся шасси.

Самолет имеет фюзеляж типа полумонокок с гладкой работающей обшивкой. В его носовой части находится воздухозаборник, который разделяется на два туннеля, каждый из которых подает воздух к одному из двигателей. Каналы имеют эллиптическое сечение, они проходят по боковым частям фюзеляжа, обходя кабину пилота с двух сторон.

Крыло самолета трапециевидной формы с закрылками и элеронами.

Хвостовое оперение МиГ-9 цельнометаллическое с высокорасположенным стабилизатором.

Кабина пилота находится в передней части фюзеляжа, она закрыта фонарем обтекаемой формы, состоящим из двух частей. Передняя часть, козырек, закреплена неподвижно, а задняя часть сдвигается назад по трем направляющим. На поздних модификациях машины козырек выполнен из броневого стекла. Кроме того, для защиты пилота на машине установлена передняя и задняя броневые плиты, их толщина составляет 12 мм.

МиГ-9 имеет трехстоечное убирающееся шасси с передним колесом. Система выпуска шасси – пневматическая.

Истребитель оснащался силовой установкой, состоящей из двух ТРД РД-20, которые являлись ничем иным, как копией немецких трофейных двигателей БМВ-003. Каждый из них мог развивать тягу в 800 кгс. Двигатели первой серии (А-1) имели ресурс всего лишь 10 часов, ресурс серии А-2 был увеличен до 50 часов, а моторы РД-20Б могли работать по 75 часов. Силовая установка МиГ-9 запускалась с помощью пусковых моторов «Ридель».

Двигатели устанавливались в реданной части фюзеляжа, сопла имели регулировку, их можно было ставить в четыре положения: «старт», «взлет», «полет» или «скоростной полет». Управление конусом сопловых аппаратов было электродистанционным.

Чтобы уберечь корпус от раскаленных газов, на нижней стороне хвостовой части был установлен специальный термоэкран, который представлял собой гофрированный лист жароупорной стали.

Топливо размещалось в десяти баках, расположенных в крыльях и фюзеляже. Их общий объем составлял 1595 литров. Топливные баки соединялись между собой, чтобы обеспечивать равномерное использование топлива, это позволяло сохранять центровку самолета во время полета.

На МиГ-9 был установлена радиостанция РСИ-6, радиополукомпас РПКО-10М, а также кислородный аппарат КП-14. Электропитание самолет получал от трофейного генератора LR-2000, который позже был заменен отечественным ГСК-1300.

Вооружение истребителя состояло из одной 37-мм пушки Н-37 с боекомплектом в сорок снарядов и двумя 23-мм пушками НС-23 с боекомплектом в 40 снарядов. Первоначально самолет планировали оснастить более мощной, 57-мм, пушкой Н-57, но впоследствии от этой идеи отказались.

Одной из основных проблем истребителя было попадание пороховых газов в двигатели, так как пушка Н-37 была установлена на перегородке между двумя воздухозаборники. На поздних модификациях самолета на Н-37 стали устанавливать газоотводные трубки. Машины, выпущенные ранее, оборудовались ими уже в строевых частях.

На первых МиГ-9 стоял коллиматорный прицел, позже он был заменен автоматическим стрелковым прицелом.

Основные типы в настоящее время

СССР/Россия

  • Ту-154. Пассажирский, 1968/1972, построено 935 (потеряно 69), завершение производства планируется в 2010, находится в стадии вывода из эксплуатации по причине низкой топливной эффективности и высокого шума, по ресурсу возможна эксплуатация до 2015-16 гг, в Аэрофлоте выведен 21 декабря 2009, после 38 лет службы.
  • Ил-76. Грузовой, военно-транспортный, 1971/1974, построено 960 (потерян 61, из них 13 уничтожены в боевых действиях), производится в настоящее время, проектируются обновлённые варианты. До 60 тонн груза, до 245 солдат (разные модификации).
  • Су-25. Штурмовик, 1975/1981, 1320 шт., планируется эксплуатация до 2020 года и дальнейшее производство.
  • Су-27. Истребитель многоцелевой, 4-го поколения. 1977/1984, построено около 600 базового типа, модификация Су-30 270 шт.[источник не указан 2956 дней]
  • Aero L-39 Albatros. Основной учебный самолёт стран Варшавского договора, Чехословакия, 1968/1972, производился до 1999, построено 2868 шт.

Страны Запада

  • Boeing 737. Среднемагистральный пассажирский самолёт. Принят в эксплуатацию в 1968 году, построено 6285 шт.[], производится в настоящее время.

Принцип работы реактивного двигателя

Рис. 1. Схема турбореактивного (реактивного) двигателя. 1 – вход воздуха; 2 – компрессор; 3 – камера сгорания; 4 – сопло;  5 – турбина.

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи – первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора, смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700°С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы – продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину, которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя – через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса – воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД – , рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Как работает реактивный двигатель

Рисунок 3 – Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Краткая история развития реактивных самолетов

Началом истории реактивных самолетов мира принято считать 1910 год, когда конструктор и инженер Румынии по имени Анри Конада создал летательный аппарат в основе с поршневым двигателем. Отличием от стандартных моделей было использование лопастного компрессора, который и приводил машину в движение. Особо активно конструктор начал утверждать в послевоенное время, что его аппарат был оснащен именно реактивным двигателем, хотя первоначально он заявлял категорически противоположное.

Изучая конструкцию перового реактивного самолета А. Конада, можно сделать несколько выводов. Первый – конструктивные особенности машины показывают, что расположенный впереди двигатель и его выхлопные газы убили бы пилота. Вторым вариантом развития мог быть только пожар на самолете. Именно об этом и говорил конструктор, при первом запуске огнем была уничтожена хвостовая часть.

Что касается самолетов реактивного типа, которые были изготовлены в 1940-е года, они имели совершенно другую конструкцию, когда двигатель и место пилота были удалены, и, как следствие, это повысило безопасность. В местах, где пламя двигателей соприкасалось с фюзеляжем, была установлена специальная жаростойкая сталь, что не приносило корпусу увечий и разрушений.

Читайте так же:  Как устроен самолет названия частей самолета

Реактивные самолеты СССР

Идея реактивного движения возникла задолго до появления авиации. Патент на создание первого турбинного двигателя был выдан англичанину Джону Барберу ещё в 1791 году. В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель. В первой половине двадцатого века учёные в разных странах экспериментировали с реактивными двигателями, однако их работы носили скорее теоретический характер, и с момента первого полёта, совершённого братьями Райт в 1903 году на протяжении сорока лет «пламенным сердцем» подавляющего большинства самолётов был поршневой двигатель внутреннего сгорания. Кризис поршневой авиации начался в конце 1930-х годов и ещё шире проявился в ходе Второй мировой войны, когда скорость серийных истребителей выросла в среднем на 100 километров в час, а мощность двигателей — в два раза, с 1000 до 2000 л. с. Но рост мощности авиамоторов вёл к увеличению их веса и размеров, а значит, и к ухудшению аэродинамики. Из-за более мощных двигателей самолёт нёс больше топлива и весил ещё больше. Для сохранения прежней нагрузки на крыло необходимо было увеличивать его площадь, что ещё больше утяжеляло самолёт. В результате образовывался замкнутый круг: мощнее двигатель — больше вес и сопротивление — хуже аэродинамика — ниже скорость.

Реактивные двигатели делятся на две большие группы: ракетные и воздушно-реактивные. Твердотопливные (чаще всего пороховые) и жидкостные двигатели называются ракетными, так как они способны работать в безвоздушном пространстве. Жидкостные (ЖРД) действуют за счёт окислителя, который вступает в реакцию с топливом. Вместе с тем, они потребляют огромное количество горючего за короткий промежуток времени и по этой причине мало пригодны для авиации. Отличительной чертой воздушно-реактивных двигателей является использование атмосферного воздуха. Воздушно-реактивные двигатели, в свою очередь, подразделяются на бескомпрессорные (прямоточные, пульсирующие) и компрессорные. К последним относятся турбореактивные двигатели (ТРД), ставшие наиболее распространённым типом реактивных двигателей после Второй мировой войны.

В Советском Союзе первые прямоточные реактивные двигатели конструкции Игоря Меркулова были испытаны зимой 25 января 1940 года на истребителе-биплане И-15бис. Большого прироста скорости они дать не могли, так как подвешивались под крыльями и создавали дополнительное аэродинамическое сопротивление; к тому же они работали как дополнение к поршневому мотору. Тем не менее, И-15бис может считаться первым советским самолётом, использовавшим в полёте реактивную тягу.

28 февраля 1940 года лётчик-испытатель Владимир Фёдоров совершил полёт на экспериментальном ракетоплане СК-9 (РП-318) конструкции Сергея Королёва, оснащённом жидкостным ракетным двигателем РДА-1-150. Ракетоплан буксировался бипланом Р-5 до высоты 2800 метров, после чего включил собственный двигатель и продолжил полёт самостоятельно. Решение о создании скоростного самолёта с жидкостным реактивным двигателем, способного подниматься в воздух без посторонней помощи, было принято в СССР в августе 1941 года. Таким образом советское руководство планировало перехватить инициативу у , которые на тот момент господствовали в воздухе над Восточным фронтом. Так как время работы ЖРД было очень непродолжительным, новый истребитель предназначался для единственной атаки на одну воздушную цель, после чего он должен был спланировать для посадки на аэродроме.

Первый серийный образец

Несмотря на неудачу с первым образцом, именно немецким авиаконструкторам удалось раньше всех запустить реактивные самолеты в серийное производство.

На поток был поставлен выпуск модели Me-262. Первый пробный полет этот самолет совершил в 1942 году, в самый разгар Второй мировой войны, когда Германия уже вторглась на территорию Советского Союза. Эта новинка могла существенно повлиять на окончательный исход войны. На вооружение немецкой армии это боевое воздушное судно поступило уже в 1944-м.

Причем выпускался самолет в различных модификациях — и как разведчик, и как штурмовик, и как бомбардировщик, и как истребитель. Всего до конца войны было произведено полторы тысячи таких самолетов.

Эти реактивные военные самолеты отличались завидными техническими характеристиками, по меркам того времени. На них были установлены два турбореактивных двигателя, в наличии имелся 8-ступенчатый осевой компрессор. В отличие от предыдущей модели эта, широко известная как «Мессершмитт», потребляла не так много топлива, имела хорошие летно-технические показатели.

Скорость реактивного самолета достигала 870 километров в час, дальность полета составляла более тысячи километров, максимальная высота — свыше 12 тысяч метров, скорость набора высоты — 50 метров в секунду. Масса пустого воздушного судна была менее 4 тонн, полностью снаряженного достигала 6 тысяч килограммов.

На вооружении «Мессершмиттов» стояли 30-миллиметровые пушки (их было не менее четырех), общая масса ракет и бомб, которые мог перевозить самолет, около полутора тысяч килограммов.

В ходе Второй мировой войны «Мессершмитты» уничтожили 150 самолетов. Потери немецкой авиации составили около 100 воздушных судов. Эксперты отмечают, что количество потерь могло бы быть намного меньше, если бы пилоты были лучше подготовлены к работе на принципиально новом К тому же имелись проблемы с двигателем, который быстро изнашивался и был ненадежен.

Достижения и рекорды

Грузоподъёмность и вместимость

A-380

Летящий реактивный самолёт и оставляемый им инверсионный след (снято суперзумом)

Пассажирские:

  • Airbus A380 (2005) — до 853 пассажиров в одноклассовой конфигурации, крупнейший в мире пассажирский самолёт.
  • Boeing 747 (1969) — в течение 35 лет до A380 был крупнейшим в мире пассажирским самолётом[уточнить], до 524 пассажиров, до 275,6 м³ груза (разные модификации).

Грузовые:

  • Ан-225 Мрия (1984—1988) — крупнейший в мире грузовой самолёт, не серийный (построен 1, задел на 1), грузоподъёмность до 250 тонн во внутреннем грузовом отсеке, до 200 тонн на внешних точках крепления. Основное назначение — перевозка частей космической системы Энергия — Буран.
  • Ан-124 Руслан (1982—1987) — крупнейший в мире серийный грузовой самолёт. Грузоподъёмность до 150 тонн (Ан-124-150), масса единицы груза допускаемая без специального разрешения — 50 тонн.
  • Lockheed C-5 Galaxy (1968) — крупнейший грузовой и военно-транспортный самолёт стран Запада, крупнейший в мире до Ан-124. Грузоподъёмность 118 тонн или 270 солдат.

Дальность

  • Scaled Composites Virgin Atlantic GlobalFlyer (2005) — построен в 1 экземпляре, конструктор Бёрт Рутан, пилот Стив Фоссет. Совершил два рекордных полёта: кругосветный полёт без посадки и дозаправки длиной 36 912 км, и абсолютный рекорд дальности полёта среди всех типов воздушных судов, включая воздушные шары — 41 467 км, вокруг света + второй раз через Атлантический океан.

Скорость

МиГ-25

  • Lockheed SR-71 (1966), разведчик. 3 529.6 км/ч в специальной рекордной версии. Несмотря на практическое использование, является промежуточным между экспериментальным и серийным — построено всего 32 самолёта, требует специальных условий для обслуживания, не может взлетать с полной заправкой топлива.
  • МиГ-25 (1964—), истребитель-перехватчик, строился серийно (1190 шт.), не требует особых условий эксплуатации. Скорость полёта 3400 км/ч кратковременно, 3 000 км/ч при нормальном режиме работы двигателей.

Первые модели

Самолеты, которые затем стали прототипами для пассажирских лайнеров, разрабатывались тогда в Германии, а точнее в Третьем Рейхе, и в Великобритании. Первопроходцами в данной области являются немцы.

Heinkel He 178 — считается первым самолетом с реактивным двигателем. Впервые его опробовали 27 августа 1939 года. Самолет показал довольно ободряющие результаты, но вышестоящее руководство в лице Рейхсминистерства авиации посчитало, что данная технология не интересна. Да и основным направлением тогда была именно военная авиационная техника.

Heinkel-He-178.

Британцы тоже не отставали от немцев. И в 1941 году мир увидел Gloster E.28/39. Конструктором двигателя был Фрэнк Уиттл.

Gloster E.28/39.

Именно эти опытные образцы показали всем, каким путем пойдет авиация в дальнейшем.

История создания первого реактивного самолета СССР

Уже в конце Второй мировой войны стало понятно, что будущее авиации за реактивными самолетами. В Советском Союзе начались работы в этом направлении, они пошли гораздо быстрее после ознакомления с трофейными немецкими разработками. В конце войны СССР смог заполучить не только неповрежденные немецкие самолеты и реактивные двигатели, но и захватить немецкие предприятия, где они выпускались.

Задание на создание реактивного истребителя одновременно получили четыре ведущих авиационных конструкторских бюро страны: Микояна, Лавочкина, Яковлева и Сухого. Основной проблемой являлось то, что на тот момент в СССР не было собственного реактивного авиационного двигателя, его еще предстояло создать.

А между тем время поджимало: вероятные противники — США, Англия и Германия — уже имели налаженное серийное производство реактивных самолетов и активно эксплуатировали эту технику.

На первых советских реактивных истребителях использовались трофейные немецкие двигатели BMW-003A и ЮМО-004.

В ОКБ Микояна работали над созданием двух истребителей, которые на стадии проекта имели обозначения И-260 и И-300. На обеих машинах планировали использовать двигатель BMW-003A. Работы над созданием самолета начались в феврале 1945 года.

И-260 копировал немецкий истребитель Me.262, два реактивных двигателя располагались под крыльями самолета. И-300 имел компоновку с силовой установкой внутри фюзеляжа.

Продувки в аэродинамической трубе показали, что компоновка с двигателями внутри фюзеляжа более выигрышная. Поэтому от дальнейших работ по прототипу И-260 решено было отказаться и доделывать И-300, который позже стал первым серийным советским реактивным истребителем под обозначением МиГ-9.

В постройку были заложены три опытные машины для проведения испытания: Ф-1, Ф-2 и Ф-3. Самолет Ф-1 был готов уже к декабрю 1945 года, однако доводка машины затянулась до марта следующего года, и только тогда начались испытания. 24 апреля 1946 года истребитель впервые поднялся в воздух, первый полет прошел нормально.

Уже начальный этап испытаний четко показал огромное превосходство реактивных самолетов над поршневыми: МиГ-9 смог разогнаться до скорости 920 км/ч, достичь потолка 13 км и набрать высоту 5 тыс. метров за 4,5 минуты. Следует сказать, что первоначально самолет планировали вооружить 57-мм автоматической пушкой Н-57, установив ее в перегородке между воздухозаборниками и двумя 37-мм пушками НС-23, расположенными в нижней части фюзеляжа. Однако позже от 57-мм пушки решили отказаться, сочтя ее мощь чрезмерной.

11 июля 1946 года произошла трагедия: во время полета фрагмент, оторвавшийся от крыла, повредил стабилизатор, в результате чего машина потеряла управление и врезалась в землю. Пилот погиб.

Второй опытный самолет Ф-2 был продемонстрирован публике во время авиапарада в Тушино. В августе на Куйбышевском заводе приступили к производству малой серийной партии, состоящей из десяти самолетов. Планировалось, что они примут участие в параде на Красной площади в октябре 1946 года.

В марте 1947 года началось серийное производство истребителя. Однако после выпуска 49 самолетов оно было приостановлено. Машину пришлось срочно переделывать. В течение двух месяцев на МиГ-9 была серьезно модернизирована топливная система, изменена конструкция хвостового обтекателя, увеличена площадь киля, также был выполнен ряд других доработок. После этого серийное производство было возобновлено.

В июне 1947 года были завершены государственные испытания четырех истребителей, двух опытных (Ф-2 и Ф-3) и двух серийных машин. В целом МиГ-9 получил положительные отзывы: по скоростным характеристикам, скороподъемности и высоте полета он существенно превосходил все поршневые самолеты, находящиеся на вооружении советской армии. Невиданной была и огневая мощь машины.

Читайте так же:  Ан-14

Были и проблемы: при стрельбе из пушек на высоте более 7 тыс. метров глох двигатель. С этим недостатком пытались бороться, но полностью устранить его так и не смогли.

Если сравнивать характеристики МиГ-9 с реактивным истребителем Як-15, который был разработан в это самое время, то микояновская машина проигрывала самолету ОКБ Яковлева в маневренности, но была быстрее в горизонтальном полете и при пикировании.

Новую машину в войсках встретили без особого энтузиазма. Летчики зачастую просто боялись летать на самолете, у которого нет винта. Кроме пилотов, нужно было переучить и технический персонал, причем сделать это нужно было в кратчайшие сроки. Спешка часто приводила к авариям, никак не связанным с техническими особенностями самолета.

Первые послевоенные

Реактивные самолеты не сыграли решающей роли во время Второй мировой, поэтому основная часть советских производственных мощностей сосредоточила усилия на совершенствовании конструкций и увеличении выпуска обычный винтовых истребителей, штурмовиков и бомбардировщиков. Вопрос о перспективном носителе атомных зарядов был трудным, и его решили оперативно, скопировав американский Боинг Б-29 (Ту-4), но главной целью оставалось противодействие возможной агрессии. Для этого в первую очередь требовались истребители – высотные, маневренные и, конечно же, скоростные. О том, как развивалось новое направление можно судить по письму конструктора А. С. Яковлева в ЦК (осень 1945 года), нашедшего определенное понимание. Простое изучение трофейной немецкой техники партийное руководство сочло недостаточной мерой. Стране были необходимы современные советские реактивные самолеты, не уступающие, а превосходящие мировой уровень. На параде 1946 года в честь годовщины Октября (Тушино) их нужно было показать народу и зарубежным гостям.

Сверхзвуковые реактивные самолеты

  • Единственный в истории авиастроения палубный бомбардировщик с возможностями сверхзвукового движения – самолет A-5 «Виджилент».

  • Сверхзвуковые истребители палубного типа — F-35 и Як-141.

В гражданской авиации был создано только два пассажирских самолета с возможностью полета на сверхзвуковых скоростях. Первый был изготовлен на территории СССР в 1968 году и обозначался как Ту-144. Было изготовлено 16 таких самолетов, но после серии катастроф машина была снята с эксплуатации.

Второй пассажирский аппарат данного типа изготовила Франция и Великобритания в 1969 году. Всего было построено 20 самолетов, эксплуатация продолжалась с 1976 по 2003 год.

Рекорды реактивных самолетов

  • Airbus A380 может расположить на своем борту 853 человека.

  • Boeing 747 на протяжении 35 лет был самым большим пассажирским самолетом с пассажировместительностью в 524 человека.

Грузовые:

  • Ан-225 «Мрия» – единственная машина в мире, которая обладает грузоподъемностью в 250 тонн. Первоначально был изготовлен для перевозки космической системы «Буран».

  •  Ан-124 «Руслан» – один из самых крупных самолетов мира с грузоподъемностью в 150 тонн.

  • Был самым крупным грузовым самолетом до появления «Руслана», грузоподъемность равна 118 тоннам.

Максимальная скорость полета

  • Летательный аппарат Lockheed SR-71 достигает скорости в 3 529 км/ч. Изготовлены 32 самолета, не может произвести взлет с полными баками.

  • МиГ-25 – нормальная скорость полета в 3 000 км/ч, возможен разгон до 3 400 км/ч.

Будущие прототипы и разработки

Пассажирские:

Крупные:

  • High Speed Civil.
  • Ту-244.

Бизнес-класс:

  • SSBJ, Ту-444.

  • SAI Quiet, Aerion SBJ.

Гиперзвуковые:

  • Reaction Engines A2.

Управляемые лаборатории:

  • Quiet Spike.

  • Ту-144ЛЛ с двигателями от аппарата Ту-160.

Беспилотные:

  • Х-51
  • Х-43.

Первые шаги

Первый реактивный самолет, способный проводить в воздухе длительное время, появился позже. Пионерами стали немцы, хотя определенных успехов добились ученые других стран — США, Италии, Британии и отсталой тогда в техническом отношении Японии. Эти образцы представляли собой, по сути, планеры обычных истребителей и бомбардировщиков, на которые устанавливались двигатели нового типа, лишенные пропеллеров, что вызывало удивление и недоверие. В СССР этой проблемой инженеры также занимались, но не так активно, делая упор на проверенную и надежную винтовую технику. Тем не менее реактивная модель самолета Би-1, оснащенная ТРД конструкции А. М. Люльки, была испытана непосредственно перед войной. Аппарат был очень ненадежен, азотная кислота, используемая в качестве окислителя, проедала топливные баки, были и другие проблемы, но первые шаги всегда трудны.

Достижения и рекорды

Грузоподъёмность и вместимость

A-380

Летящий реактивный самолёт и оставляемый им инверсионный след (снято суперзумом)

Пассажирские:

  • Airbus A380 (2005) — до 853 пассажиров в одноклассовой конфигурации, крупнейший в мире пассажирский самолёт.
  • Boeing 747 (1969) — в течение 35 лет до A380 был крупнейшим в мире пассажирским самолётом[уточнить], до 524 пассажиров, до 275,6 м³ груза (разные модификации).

Грузовые:

  • Ан-225 Мрия (1984—1988) — крупнейший в мире грузовой самолёт, не серийный (построен 1, задел на 1), грузоподъёмность до 250 тонн во внутреннем грузовом отсеке, до 200 тонн на внешних точках крепления. Основное назначение — перевозка частей космической системы Энергия — Буран.
  • Ан-124 Руслан (1982—1987) — крупнейший в мире серийный грузовой самолёт. Грузоподъёмность до 150 тонн (Ан-124-150), масса единицы груза допускаемая без специального разрешения — 50 тонн.
  • Lockheed C-5 Galaxy (1968) — крупнейший грузовой и военно-транспортный самолёт стран Запада, крупнейший в мире до Ан-124. Грузоподъёмность 118 тонн или 270 солдат.

Дальность

  • Scaled Composites Virgin Atlantic GlobalFlyer (2005) — построен в 1 экземпляре, конструктор Бёрт Рутан, пилот Стив Фоссет. Совершил два рекордных полёта: кругосветный полёт без посадки и дозаправки длиной 36 912 км, и абсолютный рекорд дальности полёта среди всех типов воздушных судов, включая воздушные шары — 41 467 км, вокруг света + второй раз через Атлантический океан.

Скорость

МиГ-25

  • Lockheed SR-71 (1966), разведчик. 3 529.6 км/ч в специальной рекордной версии. Несмотря на практическое использование, является промежуточным между экспериментальным и серийным — построено всего 32 самолёта, требует специальных условий для обслуживания, не может взлетать с полной заправкой топлива.
  • МиГ-25 (1964—), истребитель-перехватчик, строился серийно (1190 шт.), не требует особых условий эксплуатации. Скорость полёта 3400 км/ч кратковременно, 3 000 км/ч при нормальном режиме работы двигателей.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.

Принцип работы реактивного двигателя

В общем виде принцип работы реактивного двигателя практически аналогичен принципу работы ядерного двигателя. Для первого применяется химическая движущая энергия, для вотрого же — энергия ядерных элементов.

Многие из нас, особенно мужская половина населения (на службе в армии, на охоте, в тире, на полигоне), стреляли из огнестрельного оружия и, соответственно, чувствовали на себе действие реактивной силы в виде отдачи. Этот же принцип, основанный на законе сохранения импульса, применяется в реактивных двигательных установках, в которых главным двигательным веществом является топливо.

Если рассмотреть вариант реактивного двигателя, функционирующего на керосиновом топливе, то в смесительном отсеке агрегата, где топливо смешивается с окислителем и происходит горение состав, выпускается огромнейшая энергия в виде тепла и мгновенного повышения давления в 10-20-30 и более раз выше атмосферного.

При постоянном поступлении топлива и окислителя (воздуха, жидкого кислорода, азотной кислоты) выходная кинетическая энергия рабочей отработанной смеси будет обладать высоким движущим импульсом. И истекающие струи через «Лавальское» сопло агрегата в окружающее пространство будут приводить в движение установку за счет выталкивающего момента.

Рисунок 2 – Иллюстрационное изображение работы реактивного двигателя

Будущее, прототипы, исследования

Сверхзвуковые

Компьютерная модель обтекания X-43A

Проектируемые пассажирские самолёты

  • Крупные:
    • Ту-244
    • High Speed Civil Transport (англ.)русск.
  • Бизнес-класса:
    • Россия: Ту-444, SSBJ.
    • Запад: Aerion SBJ (англ.)русск., SAI Quiet Supersonic Transport (англ.)русск.
  • Гиперзвуковой проект:
    • Reaction Engines A2 (англ.)русск.

Пилотируемые летающие лаборатории

  • Перестроенный Ту-144ЛЛ с двигателями НК-32 от Ту-160.
  • Quiet Spike (англ.)русск.

Беспилотные гиперзвуковые

  • NASA X-43 (Boeing X-43)
  • Boeing X-51

Альтернативное топливо

  • Ту-155 — один из двигателей работал на сжиженном водороде и природном газе.

Освоение космоса

«SpaceShipTwo» вместе со своим носителем «White Knight Two»

  • SpaceShipOne и SpaceShipTwo используют реактивный самолёт в качестве первой ступени для суборбитального полёта. Проект активно развивается.
  • Многоцелевая авиационно-космическая система на базе Ан-225 «Мрия». Проект заморожен, обсуждается возобновление.
  • Авиационно-космическая система Спираль. Проект прекращён по причинам в высокой степени готовности.

Положение дел в советской гражданской авиации

Самолет Ту 104, построенный в КБ Андрея Туполева, стал первой реактивной машиной в отечественном гражданском самолетостроении. С началом холодной войны Советский Союз снова был вынужден стать участником гонки вооружений, которую ему навязали страны Запада. В этих тяжелых условиях советское руководство предпринимает ряд шагов, направленных на развитие гражданской авиации. Конструкторские бюро получают задания на создание воздушных пассажирских судов, способных регулярно работать на внутренних и международных маршрутах. В этот момент идет интенсивная и упорная борьба между сторонниками двух концепций:

  • первая концепция предполагала строительство пассажирских судов, оснащенных поршневыми двигателям;
  • вторая концепция предполагала создание реактивного пассажирского лайнера.

Сторонники первого варианта делали ставку на большую вместимость, экономичность и надежность. Действительно, построить пассажирский авиалайнер с поршневыми двигателями, способным перевозить 35-100 пассажиров на большие расстояния, было задачей реальной. В дальнейшем советские Ил 14 и Ил 18 только подтвердили правоту сторонников первой концепции. Для сторонников второй концепции задача стояла архисложная. Требовалось создать самолет с реактивными двигателями, способными поднять машину на большие высоты и разогнать ее до сверхзвуковой скорости. При этом необходимо было учитывать достаточно высокую пассажировместимость самолета, определенный уровень комфорта и безопасности полетов. Андрей Туполев и его коллектив конструкторов взяли на себя смелость создать в СССР первый пассажирский самолет, летающий на реактивной тяге.

Следует отметить, что идея Туполева о постройке скоростной пассажирской машины не была одинока. На Западе в небо уже сумели поднять пассажирский авиалайнер компании Де Хевилленд DH.106 «Комета». Самолет, который вмещал 30-40 пассажиров, обслуживал с мая 1952 года коммерческие авиарейсы между Лондоном и Йоханнесбургом (Южная Африка). В Советском Союзе с особым интересом наблюдали за эксплуатацией британской машины и с завистью смотрели на успехи американцев на этом поприще. Их первый реактивный пассажирский самолет Boeing 707 в начале 50-х годов уже получил свои очертания на эскизах и чертежах. Советскому Союзу срочно требовалось создать свою разработку, машину способную конкурировать с западными аналогами, поэтому идея Туполева имела значительную и серьезную поддержку на самом верху.

Технические характеристики японского реактивного самолета

Так как этот самолет, по сути, был одноразовым — камикадзе сразу на нем разбивались, то и строили его по принципу «дешево и сердито». Носовую часть составлял деревянный планер, при взлете воздушное судно развивало скорость до 650 километров в час. Все за счет трех жидкостно-реактивных двигателей. Ни взлетных двигателей, ни шасси самолету не требовалось. Он обходился без них.

Японский самолет для камикадзе доставлялся до цели бомбардировщиком Ohka, после чего включались жидкостно-реактивные двигатели.

При этом сами японские инженеры и военные отмечали, что эффективность и производительность такой схемы была крайне низка. Сами бомбардировщики легко вычислялись с помощью локаторов, установленных на кораблях, входивших в состав американского военно-морского флота. Происходило это еще до того, как камикадзе успевали настроиться на цель. В конечном счете многие самолеты гибли еще на дальних подступах к конечной цели своего назначения. Причем сбивали как самолеты, в которых сидели камикадзе, так и бомбардировщики, которые их доставляли.

Читайте так же:  Самолет Airbus A321

Сантос-Дюмонт и 14-бис

Альберто Сантос-Дюмон известен как изобретатель воздушных шаров, он также иногда указывается как создатель первого в мире управляемого самолета. Ему также принадлежит изобретение дирижаблей, которые управлялись с помощью двигателя.

В 1906 году его самолет под названием «14-бис» поднялся в воздух и пролетел более 60 метров. Высота, на которую изобретатель поднял свой летательный аппарат, составила порядка 2,5 метров. Спустя месяц, Альберто Сантос-Дюмон совершил полет длинной в 220 метров на этом же самолете, установив в результате первый рекорд по дальности перелета.

Самолет «14-бис»

Особенностью «14-бис» стала то, что конструкция смогла взлететь самостоятельно. Братьям Райт не удалось этого добиться, и их самолет поднялся в воздух с посторонней помощью. Именно этот нюанс стал основополагающим в спорах о том, кого же следует считать изобретателем первого самолета.

После «14-бис» изобретатель всерьез занялся разработкой моноплана, в результате мир увидел «Демуазель».

Альберто Сантос-Дюмон никогда не останавливался на достигнутом и не хранил свои изобретения в тайне. Конструкциями своих летательных аппаратов изобретатель охотно делился с тематическими изданиями.

История самолетостроение СССР

Четвёртым конструктором, который принял участие в «реактивной гонке», стал Семён Лавочкин. Во время Второй мировой войны он прославился как автор ряда весьма успешных машин, а спроектированные им истребители Ла-9 и Ла-11 стали лебединой песней советской поршневой авиации и приняли участие в корейской войне 1950-1953 годов. Первый реактивный самолёт Ла-150 с двигателем РД-10 (позднее — РД-10Ф) был построен в ОКБ Лавочкина в сентябре 1946 года, однако серийно он не выпускался в силу ряда конструктивных недостатков. Зато два последующих проекта Лавочкина вошли в историю. Ла-160 стал первым советским истребителем со стреловидным крылом (стреловидность крыла необходима для преодоления самолётом волнового сопротивления воздуха, возникающего на околозвуковых скоростях), а на Ла-176 лётчик-испытатель Иван Фёдоров 26 декабря 1948 года впервые в СССР преодолел звуковой барьер. Ла-176 был примечателен ещё и тем, что оснащался мощной советской версией британского турбореактивного двигателя Rolls-Royce Nene (ВК-1 с тягой в 2700 кгс). ВК-1, разработанный Владимиром Климовым, стал первым советским серийным турбореактивным двигателем и устанавливался на ряд известных советских самолётов: истребители МиГ-15, МиГ-17, бомбардировщик Ил-28, торпедоносец Ту-14.

В 1946 году британское правительство лейбористов во главе с Клементом Эттли позволило компании Rolls-Royce продать в СССР 40 единиц ТРД Rolls-Royce Nene, который был скопирован советскими специалистами сначала под обозначением РД-45, а затем в модернизированном варианте (с большей камерой сгорания и турбиной) производился под маркой ВК-1. Он устанавливался на самый массовый в истории реактивный самолёт — истребитель МиГ-15, спроектированный в ОКБ Артёма Микояна в 1947 году.

Ещё одним британским двигателем, экспортировавшимся в СССР, стал Rolls-Royce Dervent-V (РД-500 с тягой 1590 кгс). Хотя он не был так широко распространён, как ВК-1, эту модель устанавливали на серийные истребители Ла-15, Як-23, а также на экспериментальные самолёты Су-13, Як-1000,Як-25, Як-30 (1948), Ту-12, Ла-174ТК, Ла-174 и Ла-180.

Советская штурмовая авиация сравнительно долгое время использовала поршневые двигатели. До середины 1950-х годов на вооружении советских военно-воздушных сил состояли штурмовики Ил-2, Ил-8, Ил-10, созданные ещё во время Второй мировой войны. У них от модели к модели совершенствовалась броневая защита и вооружение

Скорость же считалась менее важной характеристикой для самолётов, которым предстоит бороться с наземными целями.

Поршневой мотор применялся на первой послевоенной разработке ОКБ Ильюшина — штурмовике Ил-20. Эту машину отличал необычный дизайн: кабина пилота находилась прямо над двигателем, что обеспечивало лётчику прекрасный обзор и возможность для прицельной стрельбы и бомбометания (с пикирования). Ил-20 был построен и испытан в конце 1948 года. Однако в серийное производство данная машина не поступила из-за чрезмерной вибрации двигателя, недостаточной огневой мощи (отмечалось, что она ниже, чем у Ил-10), а также из-за того,  что поршневой самолёт сочли устаревшим в век реактивной авиации. Хотя следующий ильюшинский проект — штурмовик Ил-40 с двумя реактивными двигателями, построенный в 1953 году, — успешно прошёл испытания, он также не был принят на вооружение. К тому моменту произошли изменения в советской военной доктрине, отныне отдававшей предпочтение ракетному оружию и универсальным истребителям-бомбардировщикам. Поэтому следующий специализированный штурмовик Су-25 появился в советских ВВС только в 1970-х годах.

Штурмфогель Гитлера

В силу особенностей психики фюрера, надеявшегося сокрушить «врагов рейха» (к которым он причислял страны практически всего остального мира), в Германии после начала II мировой войны развернулись работы по созданию разных видов «чудо-оружия», в том числе и реактивных самолетов. Не все направления этой деятельности оказались безуспешными. К удачным проектам можно отнести «Мессершмит-262» (он же «Штурмфогель») — первый реактивный самолет в мире, выпускаемый серийно. Аппарат был оснащен двумя ТРД, имел радиолокатор в носовой части, развивал скорость, близкую к звуковой (более 900 км/ч), и оказался достаточно эффективным средством борьбы с высотными Б-17 («Летающими крепостями») союзников. Фанатичная вера Адольфа Гитлера в чрезвычайные возможности новой техники, однако, парадоксально сыграла скверную роль в боевой биографии Ме-262. Проектировавшийся как истребитель, он, по указанию «свыше», переоборудовался в бомбардировщик, и в этой модификации не проявил себя в полной мере.

Как получить рабочее тело

Для приобретения рабочего тела в реактивных двигателях могут использоваться:

  • Вещества, отбираемые из окружающей среды (к примеру, вода, либо воздух);
  • Вещества, находящиеся в баках аппаратов или в камерах реактивных двигателей;
  • Смешанные вещества, поступающие из окружающей среды и запасаемые на бортах аппаратов.

Современные реактивные двигатели главным образом используют химическую энергию. Рабочие тела представляют собой смесь раскаленных газов, которые являются продуктами сгорания химического горючего. Когда работает реактивный двигатель, химическая энергия от сгорающих веществ преобразуется в тепловую энергию от продуктов сгорания. В то же время тепловая энергия от горячих газов превращается в механическую энергию от поступательных движений реактивных струй и аппаратов, на которых установлены двигатели.

Сверхзвуковые

Военные

A-5 «Виджилент» (North American A-5 Vigilante) — единственный в истории авиации сверхзвуковой палубный бомбардировщик.

Як-141 (прототип) и F-35 Lightning II — сверхзвуковые палубные истребители.

Гражданские

Ту-144ЛЛ в полёте

За всю историю авиации было создано только два сверхзвуковых пассажирских авиалайнера.

  • СССР — Ту-144, первый полёт 31 декабря 1968, начало перевозок пассажиров 1 ноября 1977, 1 июня 1978 снят с эксплуатации после очередной катастрофы. Построено 16 шт., в перевозках пассажиров участвовали 2, совершено 55 рейсов, перевезено 3194 пассажира. Во всех рейсах командирами экипажа были лётчики-испытатели ОКБ Туполева.
  • Великобритания, Франция — Aérospatiale-BAC Concorde, первый полёт 2 марта 1969, начало эксплуатации 21 января 1976, выведен из эксплуатации 26 ноября 2003. Построено 20 машин, активно эксплуатировалось 14, перевезено более 3 млн пассажиров, средний налёт — 17 417 часов. Один потерян в катастрофе 25 июля 2000 года, имел налёт 11 989 часов при наибольшем из всех самолётов — 23 397 (заводской № 210, регистрация G-BOAD, находится в Intrepid Sea-Air-Space Museum (англ.)).

Принцип работы реактивного двигателя

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: