Как устроен самолет названия частей самолета

Ссылки

  • [aircraft-modeling.com/content/general-information/aviation-terms/ Авиационные Термины]
  • [www.princeton.edu/~stengel/MAE331Lectures.html Princeton Aerodynamics Lecture Series]
Компоненты летательного аппарата
Элементы планёра летательного аппарата

V-образное оперение  • 
Грузоотсек  • 
Гаргрот  • 
Гермошпангоут  • 
Головной обтекатель  • 
Стабилизатор  • 
Задняя кромка крыла  • 
Зализ  • 
Кабина  • 
Киль  • 
Кессон  • 
Корень крыла  • 
Крыло  • 
Лонжерон  • 
Мотогондола  • 
Нервюра  • 
Обшивка  • 
Носок крыла  • 
Оперение  • 
Подкос  • 
Расчалка  • 
Стабилизатор  • 
Стойка  • 
Стрингер  • 
Технический отсек  • 
Узел подвески вооружения  • 
Фонарь кабины  • 
Фюзеляж  • 
Центроплан

Элементы управления

NOTAR  • 
Автопилот  • 
АБСУ  • 
Автомат перекоса  • 
Аэродинамический тормоз  • 
Боковая ручка  • 
Вибросигнализатор штурвала  • 
Демпфер рыскания  • 
Крутка крыла  • 
Руль высоты  • 
Руль направления  • 
Рулевой винт  • 
Ручка управления самолётом  • 
Сервокомпенсатор  • 
Спойлер (интерцептор)  • 
Спойлерон  • 
Стопор рулей  • 
Толкатель штурвальной колонки  • 
Триммер  • 
Флаперон  • 
Фенестрон  • 
ЦПГО  • 
Штурвал  • 
ЭДСУ  • 
Элевоны  • 
Электрогидравлический актуатор  • 
Элероны

Аэродинамика имеханизация крыла

ACTE  • 
Адаптивное управляемое крыло  • 
Активное аэроупругое крыло  • 
Аэродинамический гребень  • 
Бесхвостка  • 
Вибрирующий предкрылок  • 
Гребень крыла  • 
Законцовка крыла  • 
Закрылок  • 
Закрылок Гоуджа  • 
Закрылок со сдувом пограничного слоя  • 
Кольцевое крыло  • 
Крыло изменяемой стреловидности  • 
Крыло обратной стреловидности  • 
Наплыв крыла  • 
Пластинчатый турбулизатор  • 
Предкрылки  • 
Утка  • 
Щиток Крюгера

Авионика и приборы

ACAS  • 
EFIS  • 
EICAS  • 
GPS  • 
INS  • 
TCAS  • 
Авиагоризонт  • 
БРЛС  • 
Бортовая СЭС ЛА  • 
Бортовой самописец  • 
Вариометр  • 
Высотомер  • 
ИЛС  • 
Индикатор отклонения курса  • 
Компас  • 
Корректор высоты  • 
Командно-пилотажный прибор  • 
Плановый навигационный прибор  • 
Приборная доска  • 
Приёмник воздушного давления  • 
Радиовысотомер  • 
Радиокомпас  • 
Самолётный радиолокационный ответчик  • 
Система воздушных сигналов  • 
Система траекторного управления  • 
Сигнальное табло  • 
Система управления полётом  • 
Стеклянная кабина  • 
Указатель курса  • 
Указатель поворота и скольжения  • 
Указатель скорости

Управление двигателем и топливная система

FADEC  • 
Автомат тяги  • 
Воздушный винт  • 
Кок  • 
Кольцо Тауненда  • 
Конус воздухозаборника  • 
Обтекатель NACA  • 
Несущий винт  • 
ПАЗ  • 
Пластинчатый отсекатель  • 
Подвесной топливный бак  • 
Рампа воздухозаборника  • 
Реверс  • 
РУД  • 
Сверхзвуковой воздухозаборник  • 
Топливный бак  • 
Управление вектором тяги  • 
Форсажная камера

Шасси и системы торможения

Автомат торможения  • 
Гидравлический амортизатор  • 
Демпфер шимми  • 
Парашютно-тормозная установка  • 
Тормозной гак

Системы покидания

Катапультируемое кресло  • 
Спасательная капсула

Прочие системы

Аварийная авиационная турбина  • 
Бомбодержатель  • 
Бортовой туалет  • 
Бортовой трап  • 
ВСУ  • 
Навигационные огни  • 
Гидравлическая система  • 
Бортовые огни  • 
Противообледенительная система  • 
Развлекательная система  • 
Рампа  • 
Речевой информатор  • 
Статоскоп  • 
Система аварийной подачи кислорода  • 
Система кондиционирования  • 
Система отбора воздуха  • 
Система сигнализации пожара в авиации  • 

Основной принцип

В теории нет ничего сложного в устройстве самолета, благодаря которому тот взлетает в воздух. Главный элемент лайнера – это его двигатели, которые обеспечивают большую тягу, позволяющую разогнать машину до огромных скоростей. Именно за счет большой скорости самолет и взлетает. Итак, два двигателя разгоняют машину на взлетно-посадочной полосе, из-за чего самолет набирает высокую скорость. Затем закрылки на крыльях опускаются вниз. Они воспринимают большую нагрузку встречного воздуха, из-за чего возникает большая подъемная сила, которая и отрывает лайнер от земли.

То есть, два двигателя разгоняют самолет, закрылки на крыльях позволяют изменить вектор тяги и направить лайнер вверх. Вот так в двух словах можно описать устройство самолета для чайников.

Крылья

Крылья или крыло (часто в самолетах всего одно крыло, которое ошибочно принимают за два) – устройство самолета, которое обеспечивает аэродинамическую устойчивость лайнера и позволяет им управлять. Благодаря крыльям также обеспечивается аэродинамическая подъемная сила.

Принцип их действия основан на третьем законе Ньютона: частицы воздуха сталкиваются с нижней поверхностью крыла, отскакивают вниз, толкая при этом крыло вверх. Вместе с ним вверх направляется сам самолет. Регулировать подъемную силу позволяют закрылки (оперение) крыльев. Угол их поднятия изменяет пилот из кабины.

Варианты конструкции

Конструкция вертикального оперения может включать в себя различное число килей (1, 2 или 3).

На абсолютном большинстве самолётов гражданской авиации применяется традиционное однокилевое оперение.

Менее распространено двухкилевое. В настоящее время оно достаточно широко применяется на сверхзвуковых боевых самолётах в связи с недостаточной путевой устойчивостью самолёта на больших скоростях, в противном случае киль приходится делать непропорционально большим. Реже — на транспортных, чтобы снизить кренящий момент при отклонении руля, как на Ан-22.

Трёхкилевое оперение, хотя и использовалось в авиастроении, не получило распространения (в первую очередь из-за массы и ). Наконец, такая конструкция отличается излишней сложностью.

Прочие виды устойчивости

Поперечная устойчивость. В общем-то, этот фактор является логичным продолжением предыдущего свойства. Когда на крыло и поперечные стабилизаторы киля действуют разнонаправленные силы, они «стараются» опрокинуть самолет. Противодействует этому форма крыльев: если посмотреть на них издали, то они напоминают букву «У» с сильно разведенными верхними «рожками». Такая форма обеспечивает самостоятельную коррекцию положения летательного аппарата в пространстве. Киль при этом помогает сохранению поперечной устойчивости.

Заметим, что у самолетов с обратной стреловидностью крыла нужда в киле не столь велика… на высоких скоростях. Если она падает, то нарастание сил противодействия происходит в геометрической прогрессии. А потому для этих машин очень важен максимально прочный и легкий киль, который может сопротивляться столь высоким нагрузкам. А как его можно получить? Расскажем и об этом.

Ссылки

Компоненты летательного аппарата (ЛА)
Конструкция планера ЛА
  • Аварийная авиационная турбина
  • V-образное оперение
  • ВСУ
  • Гидравлическая система
  • Гаргрот
  • Гермокабина
  • Гермошпангоут
  • Гондола
  • Головной обтекатель
  • Стабилизатор
  • Задняя кромка крыла
  • Зализ
  • Кабина
  • Киль
  • Кессон
  • Корень крыла
  • Крыло
  • Лонжерон
  • Мотогондола
  • Нервюра
  • Обшивка
  • Носок крыла
  • Оперение
  • Подкос
  • Расчалка
  • Стабилизатор
  • Планер летательного аппарата
  • Противообледенительная система
  • Противопожарное оборудование
  • Рампа
  • Система отбора воздуха
  • Система кондиционирования
  • Стойка
  • Стрингер
  • Технический отсек
  • Фонарь кабины
  • Фюзеляж
  • Центроплан
Элементы управления полётом
  • NOTAR
  • Автомат перекоса
  • Аэродинамический тормоз
  • Боковая ручка
  • Вибросигнализатор штурвала
  • Крутка крыла
  • Руль высоты
  • Руль направления
  • Рулевой винт
  • Ручка управления самолётом
  • Сервокомпенсатор
  • Спойлер (интерцептор)
  • Спойлерон
  • Стопор рулей
  • Толкатель штурвальной колонки
  • Триммер
  • Флаперон
  • Фенестрон
  • ЦПГО
  • Штурвал
  • Элевоны
  • Элероны
Аэродинамика имеханизация крыла
  • ACTE
  • Адаптивное управляемое крыло
  • Активное аэроупругое крыло
  • Аэродинамический гребень
  • Бесхвостка
  • Вибрирующий предкрылок
  • Гребень крыла
  • Законцовка крыла
  • Кольцевое крыло
  • Крыло изменяемой стреловидности
  • Крыло обратной стреловидности
  • Наплыв крыла
  • Пластинчатый турбулизатор
  • Предкрылки
  • Роторный предкрылок
  • Утка
  • Щиток Крюгера
Бортовое радиоэлектронноеоборудование (БРЭО)
  • ACAS
  • GPS
  • БРЛС
  • Доплеровский измеритель скорости и сноса
  • TCAS
  • Радиовысотомер
  • Радиодальномер
  • Радиокомпас
  • Радиотехническая система ближней навигации
  • Речевой информатор
  • Самолётный радиолокационный ответчик
  • Самолётное переговорное устройство
  • GPWS
  • Станция предупреждения об облучении
Авиационное оборудование (АО)
  • EFIS
  • Автопилот
  • Авиационный электропривод
  • Автомат углов атаки и сигнализации перегрузок
  • Автомат тяги
  • АБСУ
  • INS
  • Авиагоризонт
  • БРЛС
  • Бортовая СЭС ЛА
  • Вариометр
  • Высотомер
  • Гировертикаль
  • Датчик угловой скорости
  • Демпфер рыскания
  • ИЛС
  • Индикатор отклонения курса
  • Кислородное оборудование
  • Компас
  • Корректор высоты
  • Курсовертикаль
  • Командно-пилотажный прибор
  • Навигационные огни
  • Плановый навигационный прибор
  • Приборная доска
  • Приёмник воздушного давления
  • Бортовые огни
  • Система воздушных сигналов
  • Система аварийной подачи кислорода
  • Система управления воздухозаборником
  • Система траекторного управления
  • Сигнальное табло
  • Система управления полётом самолёта
  • Стеклянная кабина
  • Сигнализатор обледенения
  • Указатель курса
  • Указатель поворота и скольжения
  • Указатель скорости
  • Система сигнализации пожара в авиации
  • ЭДСУ
  • FADEC
Силовая установка итопливная система (СУ и ТС)
  • EICAS
  • Воздушный винт
  • Кок
  • Кольцо Тауненда
  • Конус воздухозаборника
  • Обтекатель NACA
  • Несущий винт
  • ПАЗ
  • Пластинчатый отсекатель
  • Подвесной топливный бак
  • Привод постоянных оборотов
  • Реверс
  • РУД
  • Сверхзвуковой воздухозаборник
  • Топливный бак
  • Топливная система летательного аппарата
  • Управление вектором тяги
  • Форсажная камера
Взлётно-посадочные устройства
  • Автомат торможения
  • Гидравлический амортизатор
  • Демпфер шимми
  • Закрылок
  • Закрылок Гоуджа
  • Закрылок со сдувом пограничного слоя
  • Парашютно-тормозная установка
  • Тормозной гак
  • Тормоз колеса
  • Шасси
Системы аварийногопокидания и спасения (САПС)
  • Катапультируемое кресло
  • Спасательная капсула
Системы авиационноговооружения и обороны (АВ)
  • Бомбодержатель
  • Бомбовый прицел
  • Грузоотсек
  • Узел подвески вооружения
  • Средства инфракрасного противодействия
Бытовое оборудование
  • Бортовой туалет
  • Бортовой трап
  • Развлекательная система
Средства объективного контроля
  • Аэрофотоаппарат
  • Бортовой самописец
  • Бортовые средства объективного контроля
  • Статоскоп
  • Фотопулемёт
Функционально связанныесистемы ЛА
  • Бортовая цифровая вычислительная машина

Системы бортового оборудования

Все, что обеспечивает жизнь машины в воздухе и правильность ее поведения в полете — управляемость, безопасность, надлежащие условия для пассажиров и экипажа, исправное выполнение специальных функций, для которых, собственно, машина и создавалась, — называют системами бортового оборудования.

Часть бортовой системы электроснабжения самолета: преобразователь тока

В 1970-х годах, когда на воздушные суда начали все шире проникать электронные устройства, для этих систем появился термин «авионика», совместивший в себе понятия «авиация» и «электроника». Оборудование летательных аппаратов подразделяют на собственно авиационное, радиоэлектронное и авиационное вооружение (для военных машин).

К авиационному оборудованию относится, прежде всего, электрика, в том числе системы энергоснабжения, светотехническое оборудование, системы управления силовыми установками (двигателями машины), системы кондиционирования, автоматические противопожарные средства, противообледенительные системы.

Система энергоснабжения обеспечивает электроэнергией все системы и аппараты машины, питаемые от электричества. В нее входят в первую очередь авиационные генераторы, отличающиеся от аналогичных наземных устройств меньшими размерами и весом.

Часть бортовой системы электроснабжения самолета: генератор постоянного тока

Затем — преобразователи тока, изменяющие его род и характеристики при подаче к электрическим аппаратам. Аварийными источниками питания, которые применяются при выходе из строя основных, служат аккумуляторные батареи.

Наконец, сами электрические провода и коробки для их разветвления, а также разного рода реле, включающие и выключающие в нужный момент то или иное электрическое устройство.

Светотехническое оборудование самолета подразделяется на внешнее и внутреннее. Первое устанавливается на крыле, фюзеляже, хвостовом оперении. Оно служит для предотвращения столкновения с другими машинами, освещения взлетно-посадочной полосы, подсветки опознавательных знаков на борту и прочее. На консолях крыла, носу и хвосте находятся аэронавигационные огни, обозначающие габарит машины в темноте.

Части бортовой системы электроснабжения самолета: а — реле; б — распределительная коробка

Внутреннее освещение применяется в самом самолете — в кабине пилотов, пассажирских отсеках. Оно же используется для подсветки приборных досок.

К приборному оборудованию самолета относятся устройства, осуществляющие измерения условий полета: атмосферное давление за бортом и высоту машины над землей, скорость полета и число Маха (то есть отношение скорости самолета к скорости звука), скорость ветра за бортом, температуру воздуха и прочее. Все приборы, контролирующие эти показатели, называют аэрометрическими.

Фара для освещения взлетной полосы, применявшаяся в советских летательных аппаратах. На снимке — в убранном положении

Отдельная приборная система следит за работой силовых установок: проверяет температуру и давление в рабочих камерах двигателей, предупреждает о сбоях в управляющих системах. Специальные пилотажно-навигационные приборы сверяют движение машины с заданным курсом.

К авиационному оборудованию относят и средства объективного контроля, следящие как за оборудованием машины, так и за поведением ее экипажа, причем делающие это независимо от него. Такие средства, называемые черными ящиками, нужны для выяснения причин аварий. В эту же группу входят и всем известные автопилоты — средства, позволяющие вести машину по заданному курсу в автоматическом режиме. Система предупреждения о столкновении «обозревает» пространство вокруг машины, передает сигналы встречным воздушным судам, сообщает о появлении других машин своему пилоту.

Бортовой аэронавигационный огонь самолета

Поделиться ссылкой

Конструктивно-силовая схема крыла

Конструктивно-силовая схема крыла должна обеспечивать противодействие силам сдвига, кручения и изгиба, возникающим во время полета. Ее надежность обуславливается использованием прочного каркаса из продольных и поперечных элементов, а также прочной обшивки.

Продольные элементы каркаса крыла представлены лонжеронами и стрингерами. Лонжероны выполняются в виде фермы или монолитной балки. Они размещаются по всему внутреннему объему крыла с определенным интервалом. Лонжероны придают конструкции жесткость и нивелируют воздействие поперечных и сгибающих сил, возникающих на той или иной стадии полета. Стрингеры играют роль компенсатора осевого усилия сжатия и растяжения. Они также нивелируют местные аэродинамические нагрузки и повышают жесткость обшивки.

Поперечные элементы каркаса крыла представлены нервюрами. В данной конструкции они могут выполняться в виде ферм или тонких балок. Нервюры обуславливают профиль крыла и придают его поверхности жесткость, необходимую при распределении нагрузки в момент формирования полетной воздушной подушки. Также они служат для более надежного крепления силовых агрегатов.

Обшивка не только придает крылу необходимую форму, но и обеспечивает максимальную подъемную силу. Наравне с другими элементами каркаса, она увеличивает жесткость конструкции и нивелирует воздействие внешних нагрузок.

Крылья самолетов могут отличаться по конструктивным особенностям и функциональности обшивки. Выделяют два главных типа:

  1. Лонжеронные. Отличаются небольшой толщиной обшивки, которая образует замкнутый контур с ребрами лонжеронов.
  2. Моноблочные. Основное количество внешней нагрузки распределяется по поверхности толстого слоя обшивки, закрепленного набором стрингеров. В таком случае обшивка может быть как монолитной, так и состоять из нескольких слоев.

Говоря о конструкции крыла, стоит отметить, что его стыковка и последующее крепление должны выполняться таким образом, чтобы в конечном итоге обеспечивалась передача и распределение крутящего и изгибающего моментов, которые могут возникнуть в разных режимах эксплуатации самолетов.

Основные материалы

Наиболее оправдано использование композитов в конструкции не только хвостового оперения, но также крыльев и силовых элементов фюзеляжа, которые должны быть не только очень прочными, но и достаточно гибкими. В противном случае не исключена вероятность разрушения конструкции под действием полетных нагрузок.

Но так было не всегда. Так, гордость советского авиастроения, самолет «Ту-160», он же «Белый лебедь» или «Блэк-джек», имеет киль из… титановых сплавов. Столь специфический и чрезвычайно дорогой материал был выбран из-за огромных нагрузок на конструкцию этой машины, которая до сего дня оставляет за собой титул самого тяжелого бомбардировщика, стоящего на вооружении. Но все же столь кардинальный подход к созданию киля – редкость, а потому сегодня конструкторам куда чаще приходится иметь дело с более простыми композитными материалами.

Крыло

Крыло — это собственно тот элемент конструкции, который помогает самолету взлететь. Сила, поднимающая самолет в воздух, образуется за счет разности давлений на нижнюю и верхнюю поверхности его крыла. А эта разность возникает из-за того, что длина верхнего профиля крыла больше, чем длина нижнего, и за равный промежуток времени верхнему потоку приходится преодолевать большее расстояние, чем нижнему. Верхний поток как бы «растягивается», становиться разреженным, и плотность его уменьшается. При уменьшении плотности верхнего потока уменьшается и сила, давящая на верхнюю часть крыла. Сила же, давящая на нижнюю часть крыла, по-прежнему остается большой, поэтому крыло как бы выталкивает вверх. Сила, возникающая за счет разности сил, давящих на нижнюю и верхнюю часть крыла, называется подъемной силой.

Схема распределения воздушных потоков по профилю крыла:
1 — угол атаки; 2 — направление воздушного потока; 3 — хорда крыла; 4 — профиль крыла

Величина этой силы зависит от очень многих факторов, начиная от площади крыла и заканчивая его профилем. Линия, которая соединяет две точки крыла, находящиеся на наибольшем удалении друг от друга, называется хордой крыла. Хорда крыла образует с потоком воздушных частиц, направленных навстречу крылу, особый угол — угол атаки. Его величина в значительной степени влияет на подъемную силу. Чем она больше, тем выше подъемная сила.

Крыло самолета может быть прямым, стреловидным, треугольным, трапециевидным, эллиптическим, с обратной стреловидностью и т. д. Каждое из них имеет свои достоинства и недостатки. Так, прямое крыло характеризуется высоким коэффициентом подъемной силы, но оно непригодно для сверхзвуковых скоростей из-за сильного лобового сопротивления потокам воздуха, а треугольное, отличаясь пониженным лобовым сопротивлением, имеет невысокую несущую способность.

Оперение

На фюзеляже размещено оперение, то есть все части, которые обеспечивают устойчивость и управляемость машины в небе. Оперение бывает горизонтальным и вертикальным. Первое придает самолету продольную устойчивость относительно невидимой линии, проведенной через крыло самолета. Оно закрепляется обычно в хвостовой части машины — либо на самом фюзеляже, либо наверху киля. Хотя возможно и расположение оперения в передней части самолета. Такая схема называется уткой.

Американский самолет «Нортроп YB-49» сконструированный по схеме «летающее крыло»: и крыло, и оперение выполнены вместе с фюзеляжем

Горизонтальное оперение состоит из неподвижного стабилизатора — двух плоских «крылышек», размещенных чаще всего в хвостовой части, и шарнирно подвешенного к нему руля высоты.

Вертикальное оперение обеспечивает машине устойчивость и неподвижность в поперечном направлении, то есть относительно ее продольной оси. Иначе говоря, оно необходимо, чтобы самолет не «завалился» в полете на крыло, как это произошло с первой машиной Можайского. Вертикальное оперение шарнирно, то есть подвижно, состоит из киля и подвешенного к нему руля направления, который позволяет изменить направление движения машины в воздухе.

Хвостовое оперение «Боинга 747»:
1 — стабилизатор; 2 — руль высоты; 3 — киль; 4 — руль направления

В полете на оперение действуют те же нагрузки, что и на крыло самолета. Соответственно, и составлено оно из элементов, имеющих формы и профили, как у крыла. Оперение может быть трапециевидным, овальным, стреловидным и треугольным. Существуют схемы вообще без оперения. Они называются «бесхвостка» и «летающее крыло».

Прочие виды устойчивости

Поперечная устойчивость. В общем-то, этот фактор является логичным продолжением предыдущего свойства. Когда на крыло и поперечные стабилизаторы киля действуют разнонаправленные силы, они «стараются» опрокинуть самолет. Противодействует этому форма крыльев: если посмотреть на них издали, то они напоминают букву «У» с сильно разведенными верхними «рожками». Такая форма обеспечивает самостоятельную коррекцию положения летательного аппарата в пространстве. Киль при этом помогает сохранению поперечной устойчивости.

Заметим, что у самолетов с обратной стреловидностью крыла нужда в киле не столь велика… на высоких скоростях. Если она падает, то нарастание сил противодействия происходит в геометрической прогрессии. А потому для этих машин очень важен максимально прочный и легкий киль, который может сопротивляться столь высоким нагрузкам. А как его можно получить? Расскажем и об этом.

Какие виды устойчивости обеспечиваются килем

Различают три типа устойчивости, ради сохранения которых в конструкцию самолета входит киль:

  • Путевая.
  • Продольная.
  • Поперечная.

Разберемся со всеми этими разновидностями подробнее. Итак, путевая устойчивость. Следует помнить, что в случае потери продольной устойчивости фюзеляжа в полете, самолет все равно продолжит некоторое время лететь вперед за счет инерционной силы. После этого воздушный поток начинает набегать на заднюю часть летательного аппарата, которая лежит позади центра тяжести. Киль в этом случае препятствует возникновению вращающего усилия, вынуждающего самолет вращаться вокруг своей оси.

Продольная устойчивость. Предположим, самолет летит в нормальном режиме, центр тяжести совпадает с центром приложения давления к его фюзеляжу. В этот момент на его фюзеляж также действуют разнонаправленные силы, которые стремятся развернуть корпус летательного аппарата. Подъемная сила и сила тяжести действуют одновременно. Киль самолета (фото этой детали вы увидите в статье) обеспечивает равновесие, которое в данном конкретном случае является весьма неустойчивым. Нормальный полет без хвостового оперения, киля и стабилизаторов невозможен.

Передовые методы создания хвостового оперения самолета МС-21

В не столь далеком прошлом авиационную промышленность буквально ошеломило заявление отечественных разработчиков о том, что они занимаются разработкой абсолютно нового самолета, «МС-21». Его необычность в том, что почти за три последних десятилетия это первая отечественная машина для рейсов внутри страны. При его изготовлении были апробированы многие новейшие технологии, которые во многом коснулись инновационных особенностей киля и всего хвостового оперения.

Разрабатывая и выпуская кессон киля самолета «МС-21», отечественные специалисты смогли добиться следующего:

  • Полной автоматизации раскроя всех деталей и сырья, используемого в производстве. За счет этого удалось достичь не менее чем 50% сокращения общей стоимости всего хвостового оперения и в особенности киля.
  • В производстве хвостового оперения используется программа ProDirector, которая позволяет добиваться идеальной точности при обработке деталей. Это дает возможность создавать не только прочные, но и предельно легкие кили.
  • Также киль современного самолета создается с использованием методик двойной кривизны. Благодаря им, удается достичь разнонаправленной толщины в тех зонах, где необходимо дополнительное усиление конструкции (под килем самолета).
  • Даже крупногабаритные детали киля сегодня можно «прожаривать» в специальных автоклавах. В результате получаются предельно прочные и жесткие комплектующие, выдерживающие нагрузки любой степени.
  • Контроль геометрии деталей также проходит под управлением сложных компьютеризированных систем.

Управление

Органами управления самолета называют комплекс бортового оборудования, а также командные и исполнительные приборы. Подача команд происходит из кабины пилота, а выполняется элементами крыла и оперения. В разных самолетах могут использовать различные виды систем управления: ручная, автоматизированная и полуавтоматическая.

Независимо от вида системы, рабочие органы подразделяют на основные и дополнительные.

Основное управление. Включает в себя действия, которые отвечают за регулировку режимов полета и восстановление баланса судна в заранее установленных параметрах. К органам основного управления относятся:

  1. Рычаги, которые непосредственно управляются пилотом (рули высоты, рули горизонта, штурвал, командные панели).
  2. Коммуникации, служащие для соединения управляющих рычагов с исполнительными механизмами.
  3. Исполнительные устройства (стабилизаторы, элероны, спойлерные системы, подкрылки и закрылки).

Дополнительное управление. Используется только при взлетном и посадочном режиме.

Независимо от того, ручное или автоматическое управление реализовано в конструкции самолета, только пилот может собирать и анализировать информацию о состоянии систем самолета, показателях нагрузки и соответствии траектории с планом. И что самое главное, только он способен принять решение, максимально эффективное в сложившейся обстановке.

Классификация воздушных судов

Все авиалайнеры подразделяются на две основные группы в зависимости от назначения: военные и гражданские. Главное отличие самолетов второго типа заключается в наличии салона, который оборудован специально для транспортировки пассажиров. Пассажирские воздушные суда, в свою очередь, делятся на магистральные ближние (летают на расстояния до 2000 км), средние (до 4000 км) и дальние (до 9000 км). Для перелетов на большие расстояния используются авиалайнеры межконтинентального типа. Также в зависимости от разновидности и устройства такие летательные аппараты различаются по весу.

Двигатели

Одним из самых сложных в техническом и технологическом плане элементов является двигатель. Чаще всего в самолетах используется две или три силовые установки. Принцип работы реактивного двигателя чрезвычайно сложен, поэтому объяснять его невозможно. Этому необходимо посвятить целый курс лекций. Но в двух словах его работа выглядит так: авиационный керосин в крыльях самолета (чаще всего топливо находится в них) подается на силовые установки (двигатели), где смешивается с воздухом и при этом обогащается кислородом, поджигается. При этом выделяется энергия в большом количестве, которая и толкает самолет.

Каждый двигатель обладает огромной мощностью. В теории даже одной силовой установки достаточно для того, чтобы заставить самолет лететь, и наличие сразу двух или трех двигателей обусловлено отчасти из соображений безопасности. В мире много случаев, когда один из двух двигателей отказывал в работе, и пилоты без особых проблем сажали самолет всего с одним из них.

Как называются части самолета

Корпус состоит из следующих основных частей:

  • Фюзеляж – это главный корпус самолета, связывающий в единое целое крылья (крыло), оперения, силовую систему, шасси и другие составляющие. В фюзеляже размещаются экипаж, пассажиры (в гражданской авиации), оборудование, полезная нагрузка. Также может размещаться (не всегда) топливо, шасси, моторы и т. д.
  • Двигатели используются для приведения в движение ЛА.
  • Крыло – рабочая поверхность, призванная создавать подъемную силу.
  • Вертикальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно вертикальной оси.
  • Горизонтальное оперение предназначено для управляемости, балансировки и путевой устойчивости самолета относительно горизонтальной оси.

Схемы расположения

Чаще всего киль бывает одинарным, но в некоторых случаях его делают двойным и даже тройным (на винтомоторных бомбардировщиках). В последнем случае это требуется для обеспечения высокой курсовой устойчивости тяжелой машины. Кстати говоря, все самолеты по месту расположения киля делятся на три типа:

  • Построенные по нормальной схеме. Таков, к примеру, киль самолета А321.
  • «Утки», то есть летательные аппараты, у которых горизонтальное оперение киля расположено впереди крыльев.
  • «Бесхвостки». От киля остается только вертикальное оперение, горизонтальные элероны отсутствуют полностью.

Разумеется, последние две разновидности более характерны для «сообщества» военных самолетов, так как подобное размещение киля необходимо для придания летательному аппарату особо высокой маневренности.

В некоторых случаях используют еще более сложные конструкции. Например, подкилевые гребни (они же – подфюзеляжные кили). Они применяются на некоторых сверхзвуковых самолетах, где сохранение идеальной устойчивости во время полета жизненно необходимо. Таким образом, под килем самолета (это где, мы уже выяснили) есть дополнительный и массивный наплыв. Чаще встречается ситуация, когда горизонтальное оперение хвоста вообще приходится переносить на самый верх киля. Такое случается, если двигатели установлены в кормовой части самолета. Подобную схему, к примеру, можно увидеть на отечественных грузопассажирских самолетах «Ил».

Tags

  • 20 век
  • baltic states
  • coub
  • english
  • eu
  • gif animation
  • left- right
  • lithuania
  • livejournal
  • pentax k- x
  • samsung wb700
  • sf
  • tv
  • ua
  • usa
  • АКБ
  • БАДы
  • Ближний Восток
  • ВВС
  • ВКЛ
  • ВМВ
  • ВМФ
  • Город
  • Дизайн
  • Дом. Мастер
  • Домашнее хозяйство
  • Европа
  • Еда
  • Земля
  • Кавказ
  • Китай
  • Компактный мир
  • Личная запись
  • МТС
  • Мои фотки
  • НАТО
  • ООН
  • ПДД
  • ПМВ
  • Польша
  • РБ
  • РИ
  • РФ
  • Рецепты
  • СМИ
  • Север и Арктика
  • ТТХ
  • Фотки из сети
  • ХХ век
  • авиация
  • автомобиль
  • автоэкзотика
  • азия
  • алкоголь
  • анимация
  • апокалипсис
  • артефакты
  • артисты
  • археология
  • архитектура
  • астрономия
  • атеизм
  • б. ссср
  • беженцы
  • безопасность
  • биология
  • благоустройство территории
  • блогер
  • бодибилдинг
  • болезни
  • бронетехника
  • будущее
  • буржуи
  • бухгалтерия
  • бытовая техника
  • веломобиль
  • велосипед
  • вещи
  • видео
  • властьимущие
  • водный туризм
  • водоём
  • военные
  • воздухоплавание
  • война
  • воспитание
  • воспоминания
  • врачи
  • выживание
  • выставка
  • гаджеты
  • генотип
  • геноцид
  • герои из моего детства
  • геройство
  • гигиена
  • гитлеровцы
  • гламур
  • городской транспорт
  • государство
  • графики и диаграммы
  • граффити
  • дача
  • деградация
  • демократия
  • демотиваторы
  • деньги
  • деревня
  • дети
  • детство
  • диктаторы
  • диссиденты
  • добрые дела
  • добыча и производство
  • документы
  • дом
  • дорожная полиция
  • древние
  • дрон
  • дтп
  • е- книга
  • е- читалка
  • евросоюз
  • ж. д.
  • жизнь
  • жильё
  • журналисты
  • завод
  • заднемоторная компоновка
  • законы
  • запад
  • зверьё
  • здоровье
  • знаменательные дни
  • знаменитые
  • игра цветов
  • игрушки
  • изобр. искусство
  • иммигранты
  • инвалиды
  • иноязыки
  • инструмент и оборудование
  • интеллект
  • интернет
  • интерьер
  • интриги
  • информатика
  • искусство
  • историческое наследие
  • история
  • календарь
  • карикатура
  • карта
  • картинки из сети
  • катастрофа
  • кино
  • климат
  • клоуны
  • книги
  • коллаж
  • колёсная формула
  • комп. игра
  • компьютер
  • конкурс
  • конфликт
  • корабль
  • космические корабли
  • космонавты- астронавты
  • космос
  • кризис
  • криминал
  • кухня
  • легенда
  • лекарство
  • ленд- лиз
  • лечебные процедуры
  • лечение
  • литература
  • лодка
  • магазины
  • макет
  • мастерство
  • мебель
  • медицина
  • мемориал
  • мир
  • мировые рекорды
  • моделизм
  • мозг
  • молодёжь
  • монументы
  • моральные качества
  • морской флот
  • моря и океаны
  • мост
  • мотоцикл
  • мошенники
  • моё видео
  • мужики
  • музеи
  • музыка
  • навыки
  • напитки
  • наркотики
  • наука
  • неитралитет
  • ненависть
  • необъяснимое
  • нищета
  • образ
  • обучение
  • общество
  • огонь
  • одежда и обувь
  • озеленение территории
  • онлайн
  • оружие
  • отдых
  • охота
  • охрана природы
  • палеология
  • панорама
  • парад
  • пассажирский транспорт
  • писатели
  • плакат
  • подготовка
  • подлодка
  • поздравления
  • покупки
  • политика
  • полиция
  • помощь
  • после войны
  • правоохрана
  • праздник
  • предприниматели
  • предрассудки
  • приключения
  • природа
  • пришельцы
  • провинция
  • прогноз
  • прогулка
  • продукты питания
  • пропаганда
  • протест
  • профессионал
  • прошлое
  • психология
  • путешествие
  • работа
  • рабство
  • радио
  • радость
  • развлечения
  • ракеты
  • резня
  • реклама
  • реконструкция
  • рекорд
  • религия
  • ремонт
  • римляне
  • роботы
  • родня
  • роскошь
  • самоорганизация
  • своими руками
  • свой
  • сделано в Китае
  • секты
  • сельское хозяйство
  • семья
  • сериал
  • сказка
  • смена власти
  • смерть
  • снято на мобилу
  • сооружения
  • соревнования
  • социализм
  • социальное неравенство
  • соцлагерь
  • спасатели
  • спец. службы
  • спорт
  • справки и документы
  • средневековая Европа
  • старость
  • статистика
  • стимпанк
  • стихи
  • стройка
  • стёб
  • субкультура
  • сувениры
  • суд
  • схема
  • тв-радио
  • творчество
  • театр
  • телевидение
  • террористы
  • тесты
  • техника
  • технологии
  • топонимы
  • торговля
  • травма
  • трактор
  • транспорт
  • тренировка
  • туризм
  • тюрьмы
  • ужасы
  • услуги
  • успех
  • учённые
  • фауна
  • филателия
  • флора
  • фотография
  • фотообработка
  • фототехника
  • фрики
  • фэнтези
  • химия
  • хирургические операции
  • хобби
  • хорошие люди
  • художник
  • человек
  • чп
  • школа
  • штрафы
  • шутка
  • экипировка
  • экономика
  • экономия ресурсов
  • экспедиция
  • эксперимент
  • эксплуатация-ремонт-обслуживание техники
  • экстремалы
  • электроника
  • электросварка
  • электротранспорт
  • эмигранты
  • энергия
  • эскапизм
  • этнография
  • юбилей
  • южная америка
  • юмор

Схемы расположения

Чаще всего киль бывает одинарным, но в некоторых случаях его делают двойным и даже тройным (на винтомоторных бомбардировщиках). В последнем случае это требуется для обеспечения высокой курсовой устойчивости тяжелой машины. Кстати говоря, все самолеты по месту расположения киля делятся на три типа:

  • Построенные по нормальной схеме. Таков, к примеру, киль самолета А321.
  • «Утки», то есть летательные аппараты, у которых горизонтальное оперение киля расположено впереди крыльев.
  • «Бесхвостки». От киля остается только вертикальное оперение, горизонтальные элероны отсутствуют полностью.

Разумеется, последние две разновидности более характерны для «сообщества» военных самолетов, так как подобное размещение киля необходимо для придания летательному аппарату особо высокой маневренности.

В некоторых случаях используют еще более сложные конструкции. Например, подкилевые гребни (они же – подфюзеляжные кили). Они применяются на некоторых сверхзвуковых самолетах, где сохранение идеальной устойчивости во время полета жизненно необходимо. Таким образом, под килем самолета (это где, мы уже выяснили) есть дополнительный и массивный наплыв. Чаще встречается ситуация, когда горизонтальное оперение хвоста вообще приходится переносить на самый верх киля. Такое случается, если двигатели установлены в кормовой части самолета. Подобную схему, к примеру, можно увидеть на отечественных грузопассажирских самолетах «Ил».

Классификация по конструктивным признакам

В зависимости от количества крыльев различают моноплан (одно крыло), биплан (два крыла) и полутораплан (одно крыло короче, чем другое).

В свою очередь монопланы делят на низкопланы, среднепланы и высокопланы. В основу этой классификации лежит расположение крыльев возле фюзеляжа.

Если говорить об оперении, то можно выделить классическую схему (оперение сзади крыльев), тип “утка” (оперение перед крылом) и “бесхвостка” (оперение — на крыле).

По типу шасси воздушные судна бывают сухопутными, гидросамолеты и амфибии (те гидросамолеты, на которые установили колесные шасси).

Есть разные виды самолетов и по видам фюзеляжа. Различают узкофюзеляжные и широкофюзеляжные самолеты. Последние — это, в основном, двухпалубные пассажирские лайнеры. Наверху находятся места пассажиров, а внизу — багажные отсеки.

Вот что из себя представляет классификация самолетов по конструктивным признакам.

https://youtube.com/watch?v=arubWOnDMuo%26t%3D218s

Что это такое

Это «орган» устойчивости, который позволяет сохранять летательному аппарату заданный курс. В отличие от кораблей, киль самолета является неотъемлемой частью вертикального оперения хвоста. Внизу фюзеляжа никакого киля у летательных машин нет! Но есть одна тонкость. Дело в том, что эта часть намертво соединена с силовыми элементами фюзеляжа, а потому что-то общее в морском и воздушном термине все же есть. Так где находится киль у самолета? Проще говоря, это вертикальная часть хвоста.

Ставится он неподвижно, закрепляется в трех точках, симметричных осевой линии самолета. На вид эта деталь имеет форму идеальной трапеции. Как правило, киль самолета состоит из лонжеронов, нервюр и обшивки. Схема эта классическая, мало изменившаяся с момента появления первых самолетов. Передний лонжерон ставится наклонно (как правило).

Летающее крыло

При данной схеме фактически нет такой части самолета, как фюзеляж. Все объемы, необходимые для размещения экипажа, полезной нагрузки, двигателей, топлива, оборудования находятся в середине крыла. Такая схема имеет следующие преимущества:

  • Наименьшее
  • Наименьшая масса конструкции. В этом случае вся масса приходится на крыло.
  • Так как продольные размеры самолета небольшие (из-за отсутствия фюзеляжа), дестабилизирующий момент относительно его вертикальной оси является незначительным. Это позволяет конструкторам либо существенно уменьшить площадь ВО, либо вообще отказаться от него (у птиц, как известно, вертикальное оперение отсутствует).

К недостаткам относится сложность обеспечения устойчивости полета ЛА.

Передовые методы создания хвостового оперения самолета МС-21

В не столь далеком прошлом авиационную промышленность буквально ошеломило заявление отечественных разработчиков о том, что они занимаются разработкой абсолютно нового самолета, «МС-21». Его необычность в том, что почти за три последних десятилетия это первая отечественная машина для рейсов внутри страны. При его изготовлении были апробированы многие новейшие технологии, которые во многом коснулись инновационных особенностей киля и всего хвостового оперения.

Разрабатывая и выпуская кессон киля самолета «МС-21», отечественные специалисты смогли добиться следующего:

  • Полной автоматизации раскроя всех деталей и сырья, используемого в производстве. За счет этого удалось достичь не менее чем 50% сокращения общей стоимости всего хвостового оперения и в особенности киля.
  • В производстве хвостового оперения используется программа ProDirector, которая позволяет добиваться идеальной точности при обработке деталей. Это дает возможность создавать не только прочные, но и предельно легкие кили.
  • Также киль современного самолета создается с использованием методик двойной кривизны. Благодаря им, удается достичь разнонаправленной толщины в тех зонах, где необходимо дополнительное усиление конструкции (под килем самолета).
  • Даже крупногабаритные детали киля сегодня можно «прожаривать» в специальных автоклавах. В результате получаются предельно прочные и жесткие комплектующие, выдерживающие нагрузки любой степени.
  • Контроль геометрии деталей также проходит под управлением сложных компьютеризированных систем.

Фюзеляж

Фрагмент каркаса истребителя МиГ-1

Тело самолета без крыла, оперения, мотогондолы и шасси называется фюзеляжем. Внутри него находятся экипаж самолета, его оборудование, грузовой или пассажирский отсеки — иными словами, все, что должно подниматься и переноситься на крыле.

Бывают, впрочем, и фюзеляжи, размещенные внутри самого крыла. Такая конструкция называется летающим крылом. Чаще всего фюзеляж представляет собой тело вращения, имеющее осесимметричную форму, которая позволяет достичь наименьшего веса и минимального сопротивления воздушному трению. Конструктивно фюзеляж представляет собой скелет из ребер, обтянутых снаружи тонкостенной оболочкой — обшивкой. На языке науки такая форма называется коробчатой балкой, а вся конструкция — балочной.

Контроль

Для считывания объективной информации о состоянии воздушного судна и летной обстановки пилот пользуется приборами, разделенными на несколько основных групп:

  1. Пилотажные и навигационные. Служат для определения координат, вертикального и горизонтального положения, скорости и линейных отклонений самолета. Кроме того, эти приборы контролируют угол атаки воздушного судна, работу гироскопических систем и другие важные параметры полета. На современных самолетах эти приборы представлены в виде единого пилотажно-навигационного комплекса.
  2. Контролирующие работу силовой установки. Данная группа приборов обеспечивает пилота данными о температуре и давлении масла, расходе топливной смеси, частоте вращения коленчатых валов, а также вибрационных показателях.
  3. Приборы для наблюдения за работой дополнительного оборудования и систем. Данный комплекс состоит и приборов, датчики которых можно встретить во всех элементах конструкции самолета. К ним относятся: манометры, указатели перепада давления в герметичных кабинах, указатели положения закрылков и прочее.
  4. Приборы для оценки состояния окружающей среды. Служат для измерения температуры наружного воздуха, влажности, атмосферного давления, скорости ветра и прочего.

Все приборы, которые служат для контроля состояния самолета и внешней среды? адаптируются к работе в любых погодных условиях.

Основные материалы

Наиболее оправдано использование композитов в конструкции не только хвостового оперения, но также крыльев и силовых элементов фюзеляжа, которые должны быть не только очень прочными, но и достаточно гибкими. В противном случае не исключена вероятность разрушения конструкции под действием полетных нагрузок.

Но так было не всегда. Так, гордость советского авиастроения, самолет «Ту-160», он же «Белый лебедь» или «Блэк-джек», имеет киль из… титановых сплавов. Столь специфический и чрезвычайно дорогой материал был выбран из-за огромных нагрузок на конструкцию этой машины, которая до сего дня оставляет за собой титул самого тяжелого бомбардировщика, стоящего на вооружении. Но все же столь кардинальный подход к созданию киля – редкость, а потому сегодня конструкторам куда чаще приходится иметь дело с более простыми композитными материалами.

Современные проблемы   

Для чего мы столько времени провели, обсуждая современные способы разработки и постройки киля? Дело в том, что еще с 60-х годов прошлого века стало окончательно понятно, что дальнейшее увеличение скоростных показателей самолетов возможно только в том случае, если повышать их прочность и внедрять в производство совершенно новые разновидности полимерных материалов. Проблема летательных аппаратов последних поколений в том, что их конструкция (и киль в особенности) сильно подвержена «усталости». Из-за этого примерно к 70-м годам прошлого века были разработаны многочисленные методики контроля состояния крыла и хвостового оперения.

Требования к производству также высоки. Каждую партию деталей подвергают жесточайшим перегрузкам на вибрационных стендах, испытывают температурами и давлением. И это неудивительно, так как малейшая трещинка впоследствии чревата гибелью сотен пассажиров.

Вот вы и узнали, где у самолета киль и для чего он нужен!

Шасси

Еще один важный элемент конструкции любого самолета — шасси. Оно служит для передвижения аэроплана по земле или воде при рулении, взлете и посадке.

Шасси может быть колесным, лыжным и поплавковым. Существуют три основные схемы расположения шасси: с хвостовым колесом, с передним колесом и велосипедного типа. В первом случае две главные опоры находятся ближе к передней части, а вспомогательная, хвостовая, — сзади. Во втором случае главные опоры расположены ближе к задней части, а в носовой части находится переднее колесо.

Что касается шасси велосипедного типа, то одна главная опора находится в передней части фюзеляжа, вторая — в задней, а две вспомогательные крепятся обычно на крыльях. Схема расположения лыжного шасси идентична, с той лишь разницей, что вместо колес используются лыжи. А вот с поплавковым шасси все немного по-другому.

Существуют следующие типы гидросамолетов: поплавковые, летающие лодки и самолеты-амфибии.

У поплавковых самолетов две основных схемы расположения шасси: первая — два основных поплавка крепятся по бокам фюзеляжа, вторая — основной поплавок крепится к фюзеляжу, а два вспомогательных — к крыльям.

У летающей лодки роль основного поплавка выполняет сам фюзеляж, имеющий форму лодки, а вспомогательные поплавки крепятся к крыльям.

Самолет-амфибия — это та же летающая лодка, но кроме поплавкового шасси у нее есть убирающееся колесное шасси.

Рассмотрим устройство колесного шасси более подробно.

Шасси современного самолета состоит из:

  • амортизационной стойки, которая обеспечивает плавность хода при взлете и передвижении самолета по аэродрому, а также смягчает удары при посадке;
  • бескамерных пневматических колес, снабженных тормозами;
  • тяг, раскосов и шарниров, которые служат для уборки и выпуска шасси и через которые амортизационные стойки крепятся к крылу.

Для достижения хороших летных характеристик у большинства самолетов шасси после взлета убираются в фюзеляж либо крыло. Исключение составляют небольшие и тихоходные машины. Но даже неубирающиеся шасси закрывают обтекателями для снижения аэродинамического сопротивления.

Заключение

Вкратце схема устройства самолета является простой: двигатели толкают самолет, крылья изменяют вектор тяги и создают подъемную силу. В результате машина поднимается в воздух и летит. Когда необходимо снижаться на посадку, пилот сбавляет обороты двигателя и немного меняет вектор подъемной силы с помощью закрылков и стабилизатора на крыле. При приближению к земле пилот активирует шасси, и самолет успешно касается покрытия взлетно-посадочной полосы.

Все это звучит очень просто, однако на самом деле техническое устройство самолета намного сложнее. Перед инженерами ставятся задачи высокой сложности, поскольку для того, чтобы безопасно поднять и посадить такую машину, необходимо проведение серьезных расчетов и обеспечение работы всех систем, включая системы безопасности и жизнеобеспечения.

Всего в самолете реализуется тысячи систем, каждая из которых просчитана до мелочей, и перечислять их все можно очень долго. К примеру, в судне реализована система сбрасывания кислородных масок, которая автоматически срабатывает при разгерметизации. Механизмы тушения двигателей в случае пожара, устройства обогрева салона, ориентировки в пространстве и т. д. Современные лайнеры оснащаются умным программным обеспечением, которое даже может вывести лайнер из так называемого «штопора» – ситуации, при которой частично теряется управление.

Все это разобрать в маленькой статье практически невозможно, но общее устройство самолета теперь, пожалуй, является понятным.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector