почему самолеты летают


Вертолет — конкурент или друг самолету

Интересное изобретение человечества, связанное с перемещением в воздушном пространстве — вертолет. У него есть главное преимущество перед самолетом – вертикальные взлет и посадка. Он не требует огромного пространства для разгона, а почему самолеты летают только с оборудованных для этих целей мест? Правильно, необходима достаточно длинная и гладкая поверхность. Иначе исход посадки где-то в поле может стать чреватым разрушением машины, а того хуже — человеческими жертвами. А посадку вертолета можно совершить на крыше здания, которая приспособлена, на стадионе и т. п. Для самолета эта функция недоступна, хотя конструкторы уже работают над тем, чтобы объединить мощность и с вертикальным взлетом.

Высота полета

Чем выше самолет летит, тем меньше сопротивление самолета воздуху, что способствует в значительной степени экономии горючего. Если самолет летит на расстоянии 10 тысяч метров над землей, то экономия горючего составляет 80 процентов от полета на 1 тысяче метров. Однако у каждого самолета имеется высота, выше которой подниматься запрещено. К примеру, у самого известного самолета ТУ-154 потолок полета равен примерно 12 тысячам метров.

Телом самолета является фюзеляж. Именно в нем находится кабина пилота, системы управления, топливные баки, а также пассажирские места. Для того чтобы понять, как выглядит самолет внутри необходимо представить, что сначала идет кабина пилота, которая обязательно должна быть изолирована от основной части самолета, а затем пассажирские отделения, которые могут быть также разделены на классы.

Многих пассажиров очень часто волнует вопрос, как устроен туалет в самолете. Здесь можно отметить, что он обычно закрытого типа, так как при полете на большой высоте происходит герметизация самолета. Самолет представляет собой мини-комплекс, содержащий не только места для сидения и туалет, но и бар с кухней и обслуживающим персоналом. Полет в самолете сегодня не только приятный, но и комфортный. Современные авиакомпании делают для этого все возможное и невозможное.

Полеты на самолетах составляют неотъемлемую часть нашей повседневной жизни. Несколько веков назад человек даже не мог представить, что благодаря полету по воздуху, он сможет преодолевать тысячи километров всего за несколько часов.

Строение самолета не такое простое, как кажется на первый взгляд, разобраться в нем смогут только специалисты конструкторы. Но способность летать у самолета появилась после того, как человек научился пользоваться законами физики.

История развития авиадвигателей

Первый самолет, который запустили братья Райт, имел двигатель с 4-мя цилиндрами. Конечно же, это значительно более простая конструкция, чем те, которые используются сейчас. И, как отмечают эксперты, без эволюции самолетного двигателя было бы невозможно развитие авиаотрасли вообще – примитивные первые моторы просто бы не потянули огромные и мощные машины, летающие сегодня.

Первый авиационный двигатель создал Джон Стрингфеллоу – он считается изобретателем специального двигателя на пару, предназначенный для неуправляемой модели. Но, как показала практика, паровые двигатели не подошли для авиации – они оказались чрезмерно тяжелыми.

C 1903 года началась, как назвали ее эксперты и аналитики, настоящая война моторов. Чарльз Тэйлор поставил на лайнер братьев Райт двигатель, так называемой рядной конструкции – в нем цилиндры находятся один за другим. Есть здесь аналогия с простым автомотором.

Однако практически сразу же был создан другой мотор – звездообразный с радиальным расположением цилиндров. Такие варианты широко применялись до самого появления реактивных двигателей.

Цилиндры в ряд не давали двигателю необходимой мощности, которая требовалась для самолетов. В 1906 году появился двигатель, где цилиндры разместились под прямым углом друг к другу. Также такой вариант мотора имел впрыск. Далее промышленность развивалась, прием достаточно активно. Вследствие этого авиаотрасль имеет современные и мощные моторы.

Две вещи для того, чтобы самолет взлетел — мощные двигатели и правильная конструкция крыльев

Двигатели создают огромную тягу, которая толкает вперед. Но этого недостаточно, ведь нужно еще и вверх подняться, а при таком раскладе выходит, что пока что мы можем только разогнаться по поверхности до огромной скорости. Следующим важным моментом является форма крыльев и самого корпуса самолета. Именно они создают поднимающую силу. Сделаны крылья так, что под ними воздух становится медленнее, чем над ними, и в итоге выходит, что воздух снизу толкает корпус вверх, а воздух над крылом неспособен сопротивляться этому воздействию при достижении самолетом определенной скорости. Это явление называется в физике подъемной силой, и, чтобы разобраться в этом подробнее, нужно иметь немного познаний в аэродинамике и в прочих сопутствующих законах. Но для понимания того, почему самолеты летают, этих знаний достаточно.

Как выглядит полет с точки зрения физики

Чтобы взлететь, аппарату нужно компенсировать силу тяжести за счет подъемной и противостоять силе сопротивления воздуха тягой

Невозможный, согласно математическим расчетам Ньюкома, полет современных лайнеров можно объяснить простым опытом. Для него понадобятся 2 одинаковые банки, пара похожих мух и весы. На одну чашу ставят емкость с насекомым, которое неподвижно сидит на дне. На другой оказывается банка с постоянно летающей мухой.

По логике, первая чаша должна перевесить фактически пустую вторую емкость. Но на деле обе части мерила окажутся в балансе. Летающая муха поднимается в воздух за счет направленного вниз потока импульса, добавляя банке несколько граммов и уравновешивая силу тяжести.

В случае с самолетом принцип в общих чертах похож, только организовано все гораздо сложнее. Летят аппараты благодаря подъемной силе (ПС), возникающей при взаимодействии потоков воздуха и крыла с аэродинамической формой. Последние располагаются под углом. Острием они рассекают поток на направленный вниз и «набегающий», из-за чего под крылом образуется область высокого давления, а над ним – низкого. Разница в итоге и порождает подъемную силу.

Но чтобы взлететь, аппарату нужно компенсировать не только силу тяжести за счет подъемной, но и противостоять силе сопротивления воздуха тягой. В отличие от насекомых, судно не способно набрать нужные скорость и высоту с помощью взмахов крылышками. «Стать на воздух» самолет сможет на определенной скорости, набрать которую помогают двигатели.

Наглядное объяснение того, как и почему летают самолеты. Какую роль в передвижении по воздуху играют крыло, двигатель и другие части конструкции.

Строение самолета

Самолеты поднимаются в воздух потому, что его крылья, набирая большую скорость, создают силу, которая и толкает самолет. Она называется также подъёмной силой. В соответствии с законами физики воздушное давление там, где скорость потока намного выше, будет намного ниже, и наоборот. Такая разница в давлении и порождает подъёмную силу в самолете.

Впервые основами аэродинамики начал заниматься русский ученый Н.Е. Жуковский. В 1904 году он сформулировал теорему, которая и объясняла причины создания подъёмной силы и легла в основу строения современного самолетостроения.

Если же говорить о том, как устроен самолет, то можно отметить, что именно крыло является основной деталью для создания подъёмной силы. Оно имеет такую площадь, которая бы могла создавать подъёмную силу, способную поднять самолет, который весит несколько десятков тонн. Второй фактор, влияющий на летательную способность данного средства передвижения – это скорость. Именно от нее зависит, как долго будет лететь самолет, и на какой высоте. Средняя скорость современных самолетов – 180-250 км/ч, но иногда бывает и выше.

Подъёмная сила крыла самолёта

Возникновение подъёмной силы часто объясняют разностью статических давлений воздушных потоков на верхней и нижней поверхности крыла самолёта.

Рассмотрим упрощённый вариант появления подъёмной силы крыла, которое располагается параллельно потоку воздуха. Конструкция крыла такова, что верхняя часть его профиля имеет выпуклую форму. Воздушный поток, обтекающий крыло, разделяется на два: верхний и нижний. Скорость нижнего потока остаётся практически неизменной. А вот скорость верхнего возрастает за счёт того, что он должен преодолеть больший путь за то же время. По закону Бернулли, чем выше скорость потока, тем ниже давление в нём. Следовательно, давление над крылом становится ниже. Из-за разницы этих давлений возникает подъёмная сила, которая толкает крыло вверх, а вместе с ним поднимается и самолёт. И чем больше эта разница, тем больше и подъёмная сила.

Но в этом случае невозможно объяснить, почему подъёмная сила появляется, когда профиль крыла имеет вогнуто-выпуклую или двояковыпуклую симметричную форму. Ведь здесь воздушные потоки проходят одинаковое расстояние, и разницы давлений нет.

На практике профиль крыла самолёта располагается под углом к воздушному потоку. Этот угол называется углом атаки. А поток воздуха, сталкиваясь с нижней поверхностью такого крыла, скашивается и приобретает движение вниз. Согласно закону сохранения импульса на крыло будет действовать сила, направленная в противоположном направлении, то есть, вверх.

Но эта модель, описывающая возникновение подъёмной силы, не учитывает обтекание верхней поверхности профиля крыла. Поэтому в данном случае величина подъёмной силы занижается.

На самом деле всё намного сложнее. Подъёмная сила крыла самолёта не существует как самостоятельная величина. Это одна из аэродинамических сил.

Набегающий поток воздуха воздействует на крыло с силой, которая называется полной аэродинамической силой. А подъёмная сила — это одна из составляющих этой силы. Вторая составляющая – сила лобового сопротивления. Вектор полной аэродинамической силы – это сумма векторов подъёмной силы и силы лобового сопротивления. Вектор подъёмной силы направлен перпендикулярно вектору скорости набегающего воздушного потока. А вектор силы лобового сопротивления – параллельно.

Полная аэродинамическая сила определяется как интеграл от давления вокруг контура профиля крыла:

где:

Y – подъёмная сила

Р – тяга

– граница профиля

р – величина давления вокруг контура профиля крыла

n – нормаль к профилю

Какие варианты двигателей есть

Эксперты уверяют, что сегодня есть несколько вариантов двигателей:

  1. Классика
  2. Турбовинтовые
  3. Турбовентиляторные
  4. Прямоточные

Первые варианты функционируют по стандартному варианту. Такие варианты хорошо подходят для воздушных судов самых разных модификаций. Варианты с турбовинтовым устройством будут работать по несколько иным принципам. В таких конструкциях газовая турбина не связана с трансмиссией. Подобные варианты конструкций двигают лайнер лишь частично с использованием реактивной тяги. Для создания основной части энергии используется редуктор. Винтовые установки более экономичные, но при этом они не дают самолету развить необходимую скорость. Поэтому их зачастую ставят только на малоскоростных лайнерах.

Турбовентиляторные варианты – комбинированные варианты, в которых есть детали и нюансы от турбовинтовых и турбовентиляторных. У них большие лопасти вентилятора. Скорость вращения может снижаться за счет применения обтекателя, где и стоит вентилятор. Подобные варианты считаются экономичными, т.к. меньше расходуют топливо. КПД же у них существенно выше, чем у других. Поэтому подобные варианты двигателей зачастую устанавливают на крупных самолетах.

Прямоточные варианты не работают с подвижными элементами. Втягивание воздуха в такие происходит естественно за счет применения обтекателя, который стоит на входе.

Как устроен двигатель

Сам по себе двигатель довольно сложен по конструкции. Учитывать тут надо огромное количество деталей и нюансов

Так, например, важно помнить, что при разгоне двигателя температура воздуха в нем повышается до 1000 градусов. При этом он не должен деформироваться, загораться и т.д

Для изготовления авиационного двигателя берут только самые современные и безопасные материалы. Главное условие, предъявляемое к ним – они должны быть негорючими.

Авиационный двигатель включает в себя такие элементы, как:

  • Вентилятор
  • Компрессор
  • Камера сгорания
  • Сопло
  • Турбина

Перед турбиной стоит вентилятор, который позволяет затягивать воздух во время полета снаружи. У авиавентиляторов много лопастей, которые имеют определенную форму. И их размер, а также форма имеют крайне важное значение, т.к. именно за счет этого обеспечивается оптимальное заглатывание воздуха.

Вентилятор также решает и такую задачу, как прокачка воздушных масс в пространстве между элементами двигателя и его оболочкой. Это способствует охлаждению системы.

Здесь же находится и компрессор, обладающий высокой мощностью, – он способствует транспортировке воздуха в камеру сгорания. Все происходит под давлением достаточно высокого уровня. Именно в камере начинается смешение воздушных масс и топлива. Такая смесь поджигается, начинается нагрев как самой смеси, так и всех элементов, которые находятся рядом. Чаще всего камеру делают из керамических составляющих – обусловлено такое состояние тем, что температура здесь доходить до 2 тысяч гр., а керамическая чаша устойчива к таким нагревам.

Смесь после прохождения всех этих этапов попадает в турбину. Она по своему внешнему виду напоминает довольно большое число лопаток. Они влияют на давление проходящего смесевого потока, вследствие чего и начинает приходить в свое движение турбина двигателя. После этого она начинает вращать вал, где стоит еще один необходимый элемент — вентилятор.

Двигатель по сути своей представляет систему достаточно замкнутую – для нее требуется только, чтобы подавался воздух и было топливо в наличии.

Движение смеси продолжается, и она переходит в сопло. И на этом заканчивается первый этап рабочего состояния двигателя. Начинает создаваться струя, которую называют реактивной. Вентилятор начинает гонять воздух, который еще холодный, через сопло, за счет чего он не разрушается от слишком высокой температуры смеси.

Сегодня, как отмечают эксперты, самыми лучшими считаются подвижные сопла – они могут расширяться и сжиматься. Кроме того, такие варианты могут регулировать угол, что помогает дать правильное направление воздуху. Самолет за счет этого приобретает наибольшую маневренность.

https://youtube.com/watch?v=XMR9dfm0EoI%3Ffeature%3Doembed

Почему самолеты летают

Современные самолеты – сложные высокотехнологичные летательные аппараты с большой массой или, как принято говорить, с массой больше массы воздуха. При этом им, кажется, легко удается презреть закон всемирного тяготения и оторваться от земли. Это достигается благодаря законам аэродинамики и двум важнейшим конструктивным элементам самолета:

  • силовая установка ();
  • форма крыла.

Наличие силовой установки отличает самолет от планера, а статичность крыла – от вертолета.

Крыло самолета – поверхность со сложной, обусловленной требованиями аэродинамики форой, основное назначение которой заключается в создании подъемной аэродинамической силы, необходимой для отрыва от земли и дальнейшего полета. Подъемная сила возникает при разгоне воздушного судна за счет того, что находящееся под острым углом к встречным воздушным массам крыло создает разницу давлений.

Происходит это из-за выпуклой сверху формы крыла: проходящий над ней поток воздуха обладает меньшим давлением, чем обтекающий снизу поток. Кстати, вопреки распространенному заблуждению, крыло у самолета всего одно. Фюзеляж просто делит его на две консоли: правую и левую.

Силовая установка (двигатель) – энергетический комплекс, отвечающий за создание тяги, которая, преодолевая сопротивление воздушных масс, обеспечивает самолету поступательное движение. Другими словами, именно силовая установка при взлете разгоняет воздушное судно до скорости, при которой крыло самолета начнет создавать подъемную силу, и поддерживает необходимую тягу при движении в воздушном пространстве.  Существует три группы авиадвигателей, в зависимости от способа создания тяги:

  • винтовые;
  • реактивные;
  • смешанного типа или комбинированные.

Таким образом, совместная работа крыла и силовой установки самолета позволяет ему взлетать и перемещаться в воздушном пространстве. Конечно, двух указанных конструктивных элементов воздушного судна недостаточно для безопасного полёта. Конструкция самолета объединяет в себе множество систем, служащих этой цели.

Почему же самолет летит

Удерживать самолет в воздухе помогает подъемная сила, которая действует только на больших скоростях. Особая контракция крыла позволяет создавать подъемную силу. Воздух, который движется над и под крылом, претерпевает изменения. Над крылом он разреженный, а под крылом – сжатый. Создаются два воздушных потока, направленные вертикально. Нижний поток приподнимает крылья, т.е. самолет, а верхний подталкивает вверх. Таким образом, получается, что на больших скоростях воздух под летательным аппаратом становится твердым.

Так реализуется вертикальное движение, но что заставляет самолет двигаться горизонтально? – Двигатели! Пропеллеры как бы просверливают путь в воздушном пространстве, преодолевая сопротивление воздуха.

Таким образом, подъемная сила преодолевает силу притяжения, а тяговая – силу торможения, и самолет летит.

Физические явления, лежащие в основе управления полетом

В самолете все держится на равновесии подъемной силы и силы земного притяжения. Самолет летит прямо. Увеличение скорости полета увеличит подъемную силу, самолет станет подниматься. Чтобы нивелировать этот эффект, пилот обязан опустить нос самолета.

Уменьшение скорости окажет прямо противоположный эффект, и пилоту потребуется поднять нос самолета. Если этого не сделать, произойдет крушение. В связи с указанными выше особенностями существует риск разбиться, когда самолет теряет высоту. Если это происходит близко к поверхности земли, риск почти 100%. Если это происходит высоко над землей, пилот успеет увеличить скорость и набрать высоту.

Полезные советы

  • Где покупить авиабилеты? Мы рекомендуем проверять цены на aviasales.ru и momondo.ru. Где именно покупить – решайте сами, это поисковики и они вас переадресуют на прямую покупку.
  • Где жить? Бронировать отели, хостелы или домики лучше на Booking.com. Если забронируете по этой ссылке, после поездки вам букинг вернет 900 рублей на карту. Еще одна приятная ссылка от Airbnb.ru – скидка 1500 рублей на первое бронирование. Сравнивать цены на отели лучше на HotelsCombined.com.(рус.RoomGuru) Это один из самых продвинутых поисковиков по отелям, который не просто ищет для вас оптимальный вариант, но и дает возможность сравнить цены в крупнейших отельных агрегаторах и прямых систем бронирования.

Подпишись на наши новости и спецпредложения:

Facebook | Vkontakte | Telegram | Instagram

Магазин: Сумки для бесплатной ручной клади АК Победа

  • Авторские туры Letim.me
  • Поиск авиабилетов
  • Квартиры посуточно
  • Поиск недорогих отелей
  • Билеты на автобусы (Россия, СНГ, Европа)
  • Билеты на поезд
  • Прокат автомобилей
  • Сим-карты без роуминга
  • Медицинская страховка онлайн
  • Пакетные туры
  • Трансфер Аэропорт-Отель

4 детали авиалайнера, от которых зависят летные качества

Летающие машины отличаются от обычных очень сложными конструкциями, предусматривающими каждую мелочь. И кроме очевидных деталей, на возможности и характеристики передвижения влияют и другие части – всего собрали 4 основных.

1. Крыло. Если при отказе двигателя можно долететь до ближайшего аэродрома на втором, а при неполадках сразу в двух – приземлиться с опытом пилота, без крыла от пункта отправления не отдалишься. Не будет его – не будет необходимой подъемной силы. В единственном числе о крыле говорят не случайно. Вопреки распространенному мнению, оно у самолета одно. Этим понятием обозначают всю плоскость, расходящуюся в обе стороны от борта.

Поскольку это главная деталь, отвечающая за нахождение в воздухе, ее конструкции уделяется очень много внимания. Форму строят по точным расчетам, выверяют и испытывают. Кроме того, крыло способно выдерживать огромные нагрузки, чтобы не ставить под угрозу главное – безопасность людей.

2. Закрылки и предкрылки. Большее количество времени крыло самолета имеет обтекаемую форму, но на взлете и посадке на нем появляются дополнительные поверхности. Выпускаются закрылки и предкрылки для того, чтобы увеличить площадь и справиться с действующими на аппарат силами во время серьезных нагрузок в начале и конце пути. При приземлении тормозят лайнер, не позволяют ему упасть слишком быстро, а на подъеме помогают удержаться в воздухе.

3. Спойлеры. Появляются на верхней части крыла в моменты, когда требуется уменьшить ПС. Играют роль своеобразного тормоза. Эта и детали из предыдущего пункта представляют собой механизацию, которой пилоты управляют вручную.

4. Двигатель. Винтовые тянут машину за собой, а реактивные «толкают» вперед.

Пусть еще в начале прошлого века в идею создать летающий транспорт мало кто верил, в наши дни самолеты ни у кого не вызывают удивления. Хотя в принципах их передвижения разбираются единицы – конструкции аппаратов, физика полетов кажутся слишком сложными и рождают массу заблуждений. Но рядовому пассажиру знать подобное и не обязательно. Главное, запомнить, что возможности каждой модели лайнеров просчитаны, и повторить судьбу Икара возможно лишь в редких случаях.

Вам понравилось?

Рейтинг: (голосов: 3, средний: 5 из 5)

На какой высоте летают самолеты

Разобрались, почему летают самолеты? Теперь мы расскажем вам о том, на какой высоте они летают. Пассажирские воздушные судна “оккупировали” коридор от 5 до 12 тысяч метров. Крупные пассажирские лайнеры обычно летают на высоте 9-12 тысяч, более мелкие — 5-8 тысяч метров. Данная высота оптимальна для движения воздушных суден: на такой высоте сопротивление воздуха снижается в 5-7 раз, но кислорода еще достаточно для нормальной работы двигателей. Выше 12 тысяч самолет начинает проваливаться — разреженный воздух не создает нормальную подъемную силу, а также наблюдается острая нехватка кислорода для горения (падает мощность двигателей). Потолок для многих лайнеров — 12 200 метров.

Обратите внимание: самолет, который летит на высоте в 10 тысяч метров, экономит примерно 80% горючего по сравнению с тем, если бы он летел на высоте в 1000 метров. .

Как управляют самолетом

Как управляют самолетом?

Крыла и двигателей недостаточно для управляемого, безопасного и комфортного полета. Самолетом нужно управлять, при этом точность управления более всего нужна во время посадки. Летчики называют посадку управляемым падением – скорость самолета снижается так, что он начинает терять высоту. При определенной скорости это падение может быть очень плавным, приводящим к мягкому касанию колесами шасси полосы.

Управление самолетом совершенно не похоже на управление автомобилем. Штурвал пилота предназначен для отклонения вверх и вниз и создания крена. “На себя” – это набор высоты. “От себя” – это снижение, пикирование. Для того, чтобы повернуть, изменить курс, нужно нажать на одну из педалей и штурвалом наклонить самолет в сторону поворота… Кстати, на языке пилотов это называется “разворот” или “вираж”.

Для разворота и стабилизации полета в хвосте самолета расположен вертикальный киль. А находящиеся под ним и над ним небольшие “крылья” – это горизонтальные стабилизаторы, которые не позволяют огромной машине бесконтрольно подниматься и опускаться. На стабилизаторах для управления имеются подвижные плоскости – рули высоты.

Для управления двигателями между креслами пилотов находятся рычаги – при взлете они переводятся полностью вперед, на максимальную тягу, это взлетный режим, необходимый для набора взлетной скорости. При посадке рычаги отводят полностью назад – в режим минимальной тяги.

Многие пассажиры с интересом смотрят, как перед посадкой задняя часть огромного крыла вдруг опускается вниз. Это закрылки, “механизация” крыла, которая выполняет несколько задач. При снижении полностью выпущенная механизация тормозит самолет, чтобы не дать ему слишком разогнаться. При посадке, когда скорость очень невелика, закрылки создают дополнительную подъемную силу для плавной потери высоты. При взлете они помогают основному крылу удерживать машину в воздухе.

Чего не нужно бояться в полете

Есть несколько моментов полета, способных напугать пассажира – это турбулентности, прохождение через облака и хорошо видимые колебания консолей крыла. Но это совершенно не опасно – конструкция самолета рассчитана на огромные нагрузки, гораздо больше тех, что возникают при “болтанке”. К подрагиванию консолей следует относиться спокойно – это допустимая гибкость конструкции, а полет в облаках обеспечивается приборами.

Самолет не боится удара молнии. Атмосферный разряд протекает только по его поверхности, поэтому могут не минуту отключиться какие-то приборы. Они снова включаются, и полет продолжается в обычном режиме. А неприятности в полете могут доставить птицы, грозовые облака, их называют “фронты”, и сильный боковой ветер при посадке.
Попадание птицы в двигатель останавливает его, в грозовых облаках, которые лайнеры стараются обойти, очень мощные воздушные потоки, способные опрокинуть самолет, а боковой ветер сдувает самолет с полосы.

Современные лайнеры – это настоящие воздушные корабли, устойчивые и полностью автоматизированные. Они летают по строго определенным маршрутам, “коридорам” пролета, под постоянным контролем с земли, а для того, чтобы самолеты расходились, имеются эшелоны – заданные для полета высоты. Они никогда не пересекаются. Но организация полетов и управление воздушным движением – это особая, очень большая и интересная тема.

Rate this item:1.002.003.004.005.00Submit Rating

Рейтинг: 4.7/5. Из 21 голоса.

Please wait…

Заключение

Вкратце схема является простой: двигатели толкают самолет, крылья изменяют вектор тяги и создают подъемную силу. В результате машина поднимается в воздух и летит. Когда необходимо снижаться на посадку, пилот сбавляет обороты двигателя и немного меняет вектор подъемной силы с помощью закрылков и стабилизатора на крыле. При приближению к земле пилот активирует шасси, и самолет успешно касается покрытия взлетно-посадочной полосы.

Все это звучит очень просто, однако на самом деле техническое устройство самолета намного сложнее. Перед инженерами ставятся задачи высокой сложности, поскольку для того, чтобы безопасно поднять и посадить такую машину, необходимо проведение серьезных расчетов и обеспечение работы всех систем, включая системы безопасности и жизнеобеспечения.

Всего в самолете реализуется тысячи систем, каждая из которых просчитана до мелочей, и перечислять их все можно очень долго. К примеру, в судне реализована система сбрасывания кислородных масок, которая автоматически срабатывает при разгерметизации. Механизмы тушения двигателей в случае пожара, устройства обогрева салона, ориентировки в пространстве и т. д. Современные лайнеры оснащаются умным программным обеспечением, которое даже может вывести лайнер из так называемого «штопора» – ситуации, при которой частично теряется управление.

Все это разобрать в маленькой статье практически невозможно, но общее устройство самолета теперь, пожалуй, является понятным.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector